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Precision spectroscopy of molecular hydrogen ions: an introduction
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ABSTRACT
Themolecular hydrogen ions (MHI) are composedof only twonuclei anda single electron. These sim-
plest molecules are fascinating systems at the interface of atomic andmolecular physics. Compared
to atoms, they present the additional degrees of freedom of vibration and rotation. The spectrum
of rovibrational energies provides an exceptionally large number of transitions that are potentially
measurable with extremely small fractional uncertainty. After two decades of theoretical and experi-
mental efforts, precision studies of the vibrational transition frequencies havenow reached fractional
uncertainties in the low-10−12 range. This is nearing the level of themost accurate experiment-theory
comparisons in physics, performed on the hydrogen atom and on the g-factor of the electron. We
describe the motivation for the study of MHI, present some relevant theoretical and experimental
issues, indicate a few salient results and give an outlook towards future opportunities.
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1. Introduction

1.1. The precision physics ecosystem

Precision physics is a field that includes the study of ‘sim-
ple’ quantum systems. These are systems where the prop-
erties of and interactions between individual particles,
rather than the properties of interacting ensembles are
of interest. ‘Simple’ does not imply ‘undercomplex’, but
rather that an appropriate theory can provide a high and
competitive level of accuracy, i.e. a level that matches the
accuracy of experimental measurements, at least within
an order ofmagnitude. At present, we are concerned with
fractional accuracies in the 10−9 − 10−13 range. Thus,
‘simple systems’ are few-body systems, containing up to
three constituents – only for these can current theory
predictions reach uncertainty levels lower than approx-
imately 10−9. Accordingly, helium-like atoms are simple
but lithium-like atoms and neutral hydrogen molecules
(containing 4 particles) are complex. The distinction
simple-complex may well evolve since experimental and
theoretical accuracy levels improve in the course of time.
Advances on the theoretical front oftenmotivate the next
generation of measurements, and vice–versa.

Figure 1 gives an overview of a multitude of simple
systems. Starting from the left, we have the fundamen-
tal constituents of matter: electrons, protons, neutrons,
deuterons, positrons, antiprotons, etc. These can all
be cooled and trapped in appropriate traps. Traps are
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predominantly Penning traps or, in case of neutrons,
magnetic bottles. The fundamental properties of the par-
ticles are measured, such as the masses (actually, if high
accuracy is desired ratios of masses of different parti-
cles are measured), the g-factors, and in the case of the
neutron, also the lifetime. The g-factor measurement of
the electron, performed with an accuracy of 1.7 × 10−13

[1] on single electrons in a Penning trap, is a celebrated
example because the ab initio calculation of the g-factor
using quantum electrodynamics (QED) theory provides
competitive accuracy.

In the same box ‘single particles’ we include precision
measurements on complex atoms, e.g. cesium and rubid-
ium.Although these aremany-body systems containing a
large number of electrons, their internal complexity may
be ignored for certain aspects of the behaviour of the
atom as a whole, such as its interaction with radiation
and its motion. Thus, atom interferometry is employed
to accurately measure the acceleration of gravity and the
mass of the atom, with accuracy at the 10−10 level.

A second group of systems are two-body systems. The
hydrogen atom is its time-honoredmember. TheRydberg
constant is determined mostly from optical spectroscopy
of hydrogen. Several othermembers pertain to the group,
in particular the muonic hydrogen and deuterium, that
serve to measure the proton and deuteron charge radius,
and hydrogenic ions. The low-mass hydrogen-like ions
have already had an important impact in the field through
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Figure 1. The precision physics ecosystem. The boxes indicate
the fundamental constants that can be determined by exper-
iments using the different physical systems. Overbars refer to
antimatter. CPT: charge, parity, time reversal; BSM: beyond-the-
Standard-Model.

the measurement of the g-factor of the bound electron in
He+ [2] andC5+ [3].High-mass hydrogen-like ions show
promise as test beds for the theory of QED in strong elec-
tric field. Muonium (the bound state of a positive muon
and an electron) is of interest as a pure leptonic system,
therefore promising particularly clean tests of QED.

Progressing to more complicated systems, we have
three-body systems. These comprise first of all the classic
helium atom. Theory and measurement of its electronic
fine structure can be combined to determine the fine
structure constantα. Precisionmeasurements and theory
on trapped and cooled helium-like ionsmay in the future
provide improved determinations of α or searches for
hypothetical ‘beyond-the-Standard-Model’ (BSM) forces
between electrons.

A family of three-body systems that has become rel-
evant in the context of precision measurements are the
molecular hydrogen ions (MHI). Six different isotopo-
logues exist, three homonuclear (H+

2 , D
+
2 , T

+
2 ) and three

heteronuclear (HD+, HT+, DT+). A visualisation of
these systems by their electron cloud is presented in
Figure 2.

The goal of this paper is to furnish an introduction
aimed at non-specialists. Focusing on recent develop-
ments, the paper is complementary to very early reviews
on the precision physics of MHI [4–6] and also to an
overview of some more recent developments until 2015
[7]. A detailed introduction to the elementary non-
relativistic physics of the MHI is given in the textbook
on quantum mechanics by Cohen-Tannoudji, Diu and
Laloe; that treatment will not be repeated here.

It is planned tomake available updates and corrections
to this paper online [8].

Figure 2. Top: The electron probability density (electronic wave
function squared) of the two lowest-energy electronic states of
the MHI. It is very nearly equal for all MHI isotopologues. The cho-
sen distance R between the two nuclei corresponds to the mean
bond length Re in the ground rovibrational level v = 0, N = 0
(Figure by M.R. Schenkel). Bottom: Total (nuclear plus electronic)
energy E(R) of the MHI, and a subset of rovibrational energy
levels of HD+. The gray lines denote the rotationless vibrational
level energies E(v,N = 0), while the green lines are the rotational
ladder of the vibrational ground state, E(v = 0,N). 1 Hartree =
2ER � 27.2 eV.

Briefly, the contents is as follows: in the remainder
of this first chapter the physics motivation is detailed,
and some historical remarks are given. There follow
Chapter II, presenting the fundamentals ofMHI, Chapter
III on the experimental studies of MHI performed in the
past several years. In Chapter IV precision theory is con-
fronted to precision experiments. Chapter V deals with
applications in fundamental physics, Chapter VI and VII
offer an extended outlook and a short conclusion, respec-
tively. We point to an extended Supplemental Material
available online, treating explicitly the quantum theory
of the hyperfine structure and of the Zeeman effect.

1.2. Motivation

Why are studies ofMHI important, given that there are so
many other systems that can be studied with high accu-
racy? The emerging answer is that they provide a new
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link between the fields of one-body systems and two-
body systems. In concrete terms, it is a link between the
field of mass measurements of simplest charged particles
in Penning traps (mass spectrometry of electron, proton,
deuteron, triton) and the determination of the properties
of the hydrogen atom, i.e. the binding energies of a single
electron to a single simple nucleus (Rydberg constant),
and the charge radii of the simplest nuclei. Put in flashy
terms, MHI effectively realise a miniature, high-accuracy
mass spectrometer for the masses of electron, proton,
deuteron and triton. Decades ago, before the advent of
the Penning traps, diatomicmoleculeswere considered to
be systems suitable for precisely determining the masses
of isotopes. At least for the isotopes of hydrogen, this is
now becoming a reality, thanks to the huge advances both
in experimental techniques and in the ab initio theory of
the MHI. In addition, MHI potentially offer an alterna-
tive approach to determination of the Rydberg constant
and the nuclear charge radii.

Concerning fundamental aspects, the MHI are of
interest because the motion of and the force between two
baryons (the nuclei) are a crucial aspect. This force is not
present in any atom. In this sense, the MHI are com-
plementary to the ‘simple’ atomic systems: in hydrogen
only the force between a lepton and a baryon is of rele-
vance. In two-electron systems (helium and helium-like
ions, neutral molecular hydrogen), the electron–electron
(lepton-lepton) interaction is also involved. The hydro-
gen atom, the MHI, and the helium-like atoms form a
triad on which to test for the existence of BSM forces
between any of the fundamental (i.e. simplest) stable
constituents of matter.

This triad does not exhaust all possible forces, since
there also exists antimatter. Obviously, the correspond-
ing antimatter systems could be studied with the same
aim concerning anti-matter forces, and this is in part
already being done: on anti-hydrogen. Finally, there
are ‘hybrid’ systems, such as antiprotonic helium and
positronium, that could search for BSM forces between
matter and antimatter. In Section 5.2 we shall mention
additional topics in fundamental physics accessible to the
MHI.

1.3. Brief historical notes on spectroscopy ofMHI

Over the decades, spectroscopy of MHI has been per-
formed in a number of ways by several research groups.
Key efforts may be categorised as follows (additional
references appear in the subsequent text):

• 1960s – end 1980s: magnetic resonance and spin
resonance of trappedMHI ensembles at room tem-
perature (Dehmelt et al., Jefferts, Werth et al. [9])

• 1969–1970: first observations of rovibrational ener-
gies by classical optical and photoelectron spec-
troscopy (Herzberg et al., Takezwa, Asbrink; see
ref. [10] and ref.s therein)

• mid-1970s – end 1990s: laser and microwave spec-
troscopy of MHI beams (Lamb et al. [11], Carring-
ton et al.)

• late 1980s – ongoing: laser and microwave spec-
troscopy of Rydberg states of neutral molecular
hydrogen (Lundeen et al. [12], Merkt et al. [13])

• 2005 onward: rotational and vibrational spec-
troscopy on trapped and sympathetically cooled
MHI ensembles (Universität Düsseldorf [14]; Univ.
Amsterdam)

• 2021 onward: single MHI in a radiofrequency trap
[15,16] and in a Penning trap (with nondestructive
spectroscopy [17]).

The experimental research of the last two decades
on trapped MHI has focused on studying the MHI that
is most practical: HD+. It is heteronuclear and non-
radioactive. Experiments are in preparation to tackle
other MHI as well.

2. Fundamentals of MHI

2.1. Electronic and rovibrational energies

In the present tutorial, it is sufficient to consider the
two lowest-energy electronic states of the MHI, the 1sσg
ground state and the higher-energy 2pσu state.We depict
the squared electronic wave functions in Figure 2 top.
These two wave functions are axially symmetric (σ )
around the line joining the nuclei, implying zero elec-
tronic angular momentum around the nuclear axis. Fur-
thermore, in case ofH+

2 , thesewave functions are, respec-
tively, mirror symmetric and antisymmetric with respect
to a plane orthogonal to this line and placed at its mid-
point, and inversion symmetric (g) and antisymmetric
(u) with respect to the mid-point. In case of HD+ these
symmetries are slightly violated; the electron’smean axial
position deviates from the midpoint by � 6 × 10−4a0
towards the deuteron. The notation of the states carries
information about the atomic character acquired in the
united-nucleus limit: it can easily be pictured that when
the separation R between the two nuclei is hypothetically
made to go to zero, the 1sσg state becomes the 1s ground
state of a fictitious helium ion (nuclear chargeZnuc = 2e),
while the 2pσu state becomes its first excited electronic
state, the 2p state.

Let us introduce the total non-relativistic energy
EBO(R) as the sum of the electron’s energy (kinetic plus
potential) and the potential energy associated with the
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repulsion between the nuclei, assumed to be fixed in
space at a distance R. The state 1sσg is a bound molec-
ular state: as a function of R, a moderately deep mini-
mum of the total energy (2.79 eV, one fifth of the Ryd-
berg energy ER = mec2α2/2) occurs at a distance Re
nearly equal to 2 Bohr radii (a0). The minimum arises
from a subtle interplay between the electron’s (nega-
tive) potential energy in the field of the two nuclei, its
(positive) kinetic energy and the (positive) nuclear repul-
sion energy. At R = Re, the first (−2.4ER) is substantially
larger in absolute terms than the sumof the latter two, the
kinetic energy being� +1.2ER and the nuclear repulsion
being � +ER.

The 2pσu state on the other hand does not exhibit
any deep minimum, only a very shallow minimum at
large internuclear separation, R′

e � 12.5a0 [18]. In the
context of the present discussion, the 2pσu state is only
important for enabling photodissociation spectroscopy,
see Section 3.1.4.

The concept of a total energy EBO(R) results from the
Born-Oppenheimer approximation, i.e. a separation of
electronic and nuclear dynamics based on the fact that
the electron’s motion adapts nearly instantaneously to
changes in the positions of the nuclei. Such changes do
indeed occur, since the nuclei may vibrate against each
other and rotate in space. (Even if these motions are
minimised, zero-point motion remains.) In an improved,
so-called ‘adiabatic’ approximation E(R), one can include
the effects of the finite speed of the electron at lowest
order and also the relativistic corrections of the electron’s
kinetic energy at lowest order. These adiabatic correc-
tions are isotopologue-dependent.

The function E(R) [19] becomes an effective poten-
tial for nuclear motion: the rotations and vibrations of
the two nuclei occur in this potential. These two types
of motion are quantised, i.e. discrete energies E(v,N)
result, indicated in Figure 2 bottom. Here, we introduce
the basic quantum numbers of the MHI, the vibrational
quantumnumber v = 0, 1, 2, . . . and the rotational quan-
tum numberN = 0, 1, 2, . . .. The energies E(v,N) are the
solutions of a one-dimensional Schrödinger equation for
nuclearmotion, that also furnishes the nuclear wavefunc-
tions.

One can find an early calculation of the adiabatic ener-
gies in ref. [19]. There it was shown that for the case of
HD+ the largest possible vibrational quantum number
is vmax = 21, and the largest rotational quantum num-
ber isNmax = 41, occurring for v = 0. More precise later
calculations [20] showed that there exists an additional
weakly bound vibrational level with v = 22 (the corre-
sponding nuclear wavefunction has 22 nodes!). Thus,
a total of 637 rovibrational levels exist. These numbers
change for the other MHI, because of their differing

reduced nuclear masses, the crucial parameter entering
the nuclear Schrödinger equation. The surprising and
fascinating aspect of the level structure is that most levels
(the fraction is estimated as 80%) have natural lifetimes
larger than 10ms, which qualifies them asmetastable (see
Section 2.4.2).

Transitions between rovibrational levels can be
induced by applying appropriately tuned radiation from
a huge spectral range, from THz to UV. As described in
Section 2.4.1, in heteronuclear MHI, excitation rates are
large only for transitions obeying the rotational selection
rule �N = N′ − N = ±1. (Unprimed (primed) quanti-
ties refer to the lower (upper) state). Electric-dipole (E1)
transitions are transitions of this kind. There is no strict
vibration selection rule for �v = v′ − v. Thus, there are
on the order of 8 000 E1 transitions, most of which will
have a very high natural quality factor (transition fre-
quency divided by natural linewidth) exceeding 1 × 1012,
because both upper and lower level are metastable.

2.2. Elementary considerations

2.2.1. The rotational transition frequencies
Consider a dumbbell model of a diatomic molecule, the
two nuclei of mass m1,m2 being rigidly connected to
each other at a distance Re (Figure 3). The rotation of the
molecule is quantised. This is described by the rotational
hamiltonian (first discussed by Schrödinger in 1926)

Hrot = N2

2I0
,

whereN is the rotational angularmomentumand I0 is the
moment of inertia around the centre of mass. Quantisa-
tion of angular momentum implies that the energies are
Erot(N) = �2N(N + 1)/2I0. If we neglect the electron’s
mass, we can express I0 = μR2e , in terms of the internu-
clear separation and of the reduced nuclear mass μ =
m1m2/(m1 + m2). Expressing Re in units of the Bohr
radius a0, and the reduced nuclear mass in units of the

Figure 3. A simple model for a quantum rotator: two masses are
rigidly connected and rotate around an axis going through the
centre of mass. The angular momentum N is quantised.
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electron massme, we obtain

Erot(N) = N(N + 1)
(
a0
Re

)2 me

μ
ER.

This shows that the rotational energies are proportional
to the Rydberg energy ER � 13.6 eV, rescaled by the ratio
of electron mass to reduced nuclear mass.

The transition frequency between the non-rotating
state N = 0, and the first excited rotational state N = 1
(semiclassically, the slowest rotating dumbbell) is thus

frot = 2
(
a0
Re

)2 me

μ
cR∞. (1)

We have expressed the rotational transition frequency
in terms of the Rydberg constant R∞, where cR∞ =
ER/h � 3.3 × 1015Hz. Since Re � 2a0 and μ/me �
1.2 × 103 for HD+, the fundamental rotational fre-
quency is frot � 1.3 THz.

Classically, the rotating dumbbell molecule with dis-
similar masses m1, m2 but equal nuclear charges Z1 =
Z2 represents a rotating electric dipole because the rota-
tion is around the centre of mass while the ‘centre of
charge’ is midway between the two masses, the elec-
tron’s charge being smeared out symmetrically over the
molecule, Figure 2. Therefore, one can expect that tran-
sitions between rotational states can be excited by an
alternating electric field. These are electric-dipole (E1)-
allowed transitions in the THz range.

2.2.2. The vibrational transition frequencies
We proceed to estimate the vibrational frequency of a
diatomic molecule characterised by an effective nuclear
potential E(R) as in Figure 2. Near the minimum at R =
Re, the variation will be approximately quadratic, E(R) �
k(R − Re)2/2, with the force constant k = d2E(Re)/dR2.
So, we have a harmonic oscillator system for a fictitious
nuclear particle of mass equal to the reducedmassμ. The
classical vibrational frequency is then

fvib = 1
2π

√
k
μ
.

Quantum-mechanically, the vibrational level energies are
Evib(v) = (v + 1

2 )hfvib. We wish to estimate the value of
the force constant k. Because the MHI is a system bound
by the Coulomb forces between singly-charged nuclei
and the electron, the potential well has a width on the
order of the Bohr radius and its depth is of the order of
the Rydberg energy ER. The actual depth is one-fifth of
that. Therefore, k ∼ O(ER/a20). This can be re-expressed

asO(me(cR∞)2), resulting in

fvib ∼ O(1)
2π

√
me

μ
cR∞.

The transition frequency between two vibrational energy
levels v, v′ is fv′v = (Evib(v′)− Evib(v))/h = (v′ − v)fvib.
These transition frequencies scale with the Rydberg fre-
quency, as do the rotational frequencies, but their scaling
with the reduced mass is different. Also, the vibrational
frequencies are substantially higher than the rotational
frequency: fvib � 60 THz for HD+.

The first-order dependencies of the rotational and
vibrational frequencies on the mass ratio μ/me and on
the Rydberg constant R∞ are the key points of inter-
est for the field of metrology of fundamental constants.
As v, v′ become larger than 1, the dependencies devi-
ate increasingly from the simple square-root or linear
dependencies, but remain important for most transi-
tions, if not all. The precise dependencies can be calcu-
lated (Section 2.3.6). It is useful to contrast them with
those in a hydrogen-like atom. For a nuclear mass mn
the non-relativistic transition frequencies are given by
fi(mn) = fi(∞)/(1 + me/mn), where fi(∞) are the fre-
quencies of the infinite-nuclear mass system and depend
only on the electron mass. The fractional mass shift
fi(mn)/fi(∞)− 1 � −me/mn is particularly large for the
light atoms hydrogen, deuterium and tritium, but still a
factor 2me/mn smaller compared to an MHI vibrational
frequency. The atomic mass shift is therefore not large
enough for determining the hydrogen isotope masses at
a competitive level.

2.3. Precision theory

2.3.1. Overview
We have so far presented rough estimates and introduced
the adiabatic approximation. While the latter reflects the
theory status of half a century ago, the energies of the
states in the 1sσg manifold can nowadays be computed
with exquisite accuracy, ab initio. This is the result of
work by V. I. Korobov, D. Bakalov, J.-Ph. Karr, L. Hilico
and coworkers, spanning two decades [21]. The theo-
retical effort was in part triggered [22] by the plans of
precision spectroscopy experiments that were conceived
in the late 1990s by the author and his team [23] and
spurred by the early experimental developments at the
Universität Düsseldorf [14,24]. It is not possible or nec-
essary to give a complete account of the theory, here;
instead we shall highlight a few aspects only.

The ab initio energy of a rovibrational level, ignor-
ing the influence of the magnetic moments of the con-
stituents but not of the electron spin, is denoted by
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Espin−avg and can be separated into three contributions,

Espin−avg(v,N)

= Enonrel(v,N)+ Erel(v,N)+ EQED(v,N). (2)

Espin−avg contains first of all the non-relativistic ener-
gies Enonrel(v,N). Their computation is a solved problem.
Next, the relativistic energies Erel(v,N). They have been
computed with accuracy such that the resulting uncer-
tainties on the transition frequencies are smaller than
10−12 fractionally and thus do not affect the interpreta-
tion of the current experiments [25]. Third, the computa-
tion of EQED(v,N), the energy contribution arising from
QED, has been and continues to be a very challenging
problem.

Finally, due to the non-zero magnetic moments of
the particles, there occurs a hyperfine structure (HFS,
spin structure) in each level (v,N), with several spin
states, except in special cases. Different spin states are
denoted by p and have corresponding (positive or neg-
ative) ‘spin’ energies Espin(v,N, p). The total energy Etot
of a particular quantum state (v,N, p) is given by

Etot(v,N, p) = Espin−avg(v,N)+ Espin(v,N, p). (3)

A weighted average over all spin states’s total ener-
gies for given v, N, yields the spin-averaged energy
Espin−avg(v,N) [26], explaining its name. Only very
recently, also the computation of the spin energies with
uncertainty at the level of today’s most accurate experi-
ments has been accomplished.

In experimental studies, one measures frequencies of
individual spin (HFS) components i : p → p′ of a rovi-
brational transition (v,N) → (v′,N′) (‘lines’):

f (v,N, p → v′,N′, p′) = (E(v′,N′, p′)− E(v,N, p))/h.

Following Equation (3) this frequency is split into a spin-
averaged and a purely spin contribution,

f (v,N, p → v′,N′, p′) = fspin−avg(v,N → v′,N′)

+ fspin(v,N, p → v′,N′, p′),

fspin(v,N, p → v′,N′, p′) = (Espin(v′,N′, p′)

− Espin(v,N, p))/h.

To a pair (p, p′) we may assign a sequence number i,
so that the ‘spin frequency’ may be abbreviated as fspin,i
and the rovibrational spin component frequency (line) as
fline i.

The main aspects of the four energy contributions are
as follows.

1. Enonrel: This is the largest contribution; it is the
energy obtained from the solution of the Schrödinger

equation for the MHI, nota bene a Schrödinger equation
for the three particles, in the centre of mass frame. This
is therefore non-relativistic physics. It should be pointed
out that for the axially symmetric 1sσg state the three-
body Schrödinger equation reduces to a second-order
partial differential equation in three scalar variables:
these can be taken to be the nuclear separation R, and
the two distances of the electron from the two nuclei, r1,
r2. This equationmust be solved without any approxima-
tion (i.e. without assuming thatme/mn is small) in order
to guarantee sufficient accuracy for confrontation with
experiment. The solution method [22] is reviewed in ref.
[27]. It is a variational expansion containing a very large
set of appropriately chosen three-body basis wavefunc-
tions, typically, 5000–20,000. The expansion coefficients
are the variational parameters. They are optimised to find
stationary values of the energy Enonrel. Note that these
are of the order of −ER (Figure 2). They are accurate to
approximately 20 digits. This is so high that at present it
does not limit the accuracy of the total energy Etot. In
fact, it is the difference between two such rather large
energies, Enonrel(v′,N′)− Enonrel(v,N), which must be
computed with appropriately high accuracy because it is
the dominant contribution to any transition frequency f.
This is particularly important for the fundamental rota-
tional transition, where the transition frequency is only a
small fraction of the level energies, hfrot � Enonrel(v,N =
1)− Enonrel(v,N = 0) � 4 × 10−4ER.

2. Erel: As for atoms, a non-relativistic description of
theMHI is insufficient if high accuracy of the energy val-
ues is desired. Qualitatively speaking, the electron in the
1sσg state has a momentum that is weakly relativistic, on
the order of p ∼ meαc. This is the same situation as in
the 1s state of hydrogen. In the Taylor expansion of the
electron’s kinetic energy,

√
mec2 + (cp)2 � mec2 + p2

2me
−

(
p2/2me

)2
2mec2

+ . . . ,

the third term represents one of the two dominant
relativistic corrections. It can be evaluated in first-
order perturbation theory; numerically it is of order
−E2R/(2mec2) = −α2ER/4. The precise relativistic cor-
rection Erel contains in addition the equally important
Darwin term for the electron, and much smaller nuclear
terms, terms that scale in the sameway with α [25]. Thus,
the total Erel is of order α2/4 � 10−5 smaller than the
non-relativistic energy.

3. EQED: This energy arises from the interaction of
the electron with the radiation field. For the MHI, where
the electron is weakly relativistic, it has been computed
by perturbation theory, applied to the non-relativistic
QED (NRQED) expansion (for a tutorial, see [28]). The
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Table 1. Contributions to the ab initio spin-averaged frequency f (theor)5 = fspin−avg(0, 0 → 5, 1) [49].

Relative order Value (kHz) Contributions

α0 259,760,034,608.88 energies from 3-body Schrödinger equation, non-relativistic
α2 4,008,944.07 Relativistic corrections in Breit–Pauli approximation; finite-size nuclei (†)
α3 −1,065,424.00 Leading-order radiative corrections (e.g. leading-order Lamb shift,

anomalous magnetic moment of electron)
α4 −7, 544.12 1-loop, 2-loop radiative corrections; more relativistic corrections
α5 468.43 Radiative corrections up to 3-loop diagrams; Wichmann–Kroll

contribution
α6 −3.39 Higher-order radiative corrections (1-loop self-energy, 2-loop radiative)
Other 1.11 Muonic and hadronic vacuum polarisation corrections for the electron
Total 259,762,971,051.0 Uncertainty of QED contributions: 2.1 kHz

Notes: The computation of the QED contributions (relative order α3 and higher) employed NRQED theory and followed
ref. [50]. A total of 41 individual contributions were calculated for both upper and lower rovibrational levels. The left
column indicates theorder relative to the transition frequency,which itself is of order cR∞

√
me/μ = α2mec2

√
me/μ/2h.

The named individual contributions in column 3 are a subset of those included. (†) The term of relative order α2 includes
the nuclear volume shift, −73.0(3)CODATA18 kHz from the proton and −465.9(3)CODATA18 kHz from the deuteron. These
uncertainties arise from the uncertainties or the nuclear charge radii. The 2-loop radiative corrections have contributions
of different orders. From [51].

calculation builds on the extensive theoretical work per-
formed for the hydrogen atom over more than half a
century. The perturbation theory expresses EQED as a
power series in the inverse electron mass, in the inverse
nuclear mass, and in α. The α-series coefficients have
themselves a dependence on α, for example contain-
ing contributions proportional to ln(α−2). Here, we will
not describe the calculation of EQED [7], but we men-
tion two aspects. First, the largest QED energy contri-
bution is of order α3ER; this results in a very relevant
contribution to the transition frequencies, see Table 1.
Second, the uncertainty with which EQED can today be
computed is a crucial limitation for the reach of MHI
spectroscopy. The uncertainty amounts to ur,QED � 8 ×
10−12 for vibrational transition frequencies between level
pairs with small or moderately large v, v′. For the funda-
mental rotational frequency the uncertainty is approxi-
mately twice as large [21]. ur,QED stems from not-yet cal-
culated contributions that also limit the accuracy of the
theory of the hydrogen atom: the contributions of order
R∞α6 and higher to the one-loop self-energy [29] and
to the two-loop radiative corrections [30] for the elec-
tron. These could so far only be computed up to residual
uncertainties.

4. Finally, the spin energy Espin is due to the inter-
actions between the magnetic moments carried by
the particles and the magnetic fields generated by
the electron motion, the nuclear magnetic field and
the molecular rotation. When a MHI contains a deu-
terium nucleus, notably in HD+, its non-zero electric
quadrupole moment Qd gives rise to a further interac-
tion, with the gradient of the electric field at its location.
The first theoretical account of spin interactions (for
H+

2 ) goes back more than 60 years [31], well before the
first experimental observation [32]. Subsequent refined
theory work allowed interpreting the HFS observed in
experiments of the 1960s to 1980s. Starting 15 years ago,

an ab initio theory of the spin interactions has been devel-
oped [33–40]. Here, one derives an effective hamilto-
nian Hspin(v,N) by obtaining the spin interactions from
an expansion in orders of α and projecting the general
hamiltonian onto themanifold of spin states with definite
values of v and N.

2.3.2. Hyperfine structure theory: principles
(a) HD+

In the following, we emphasise this molecule, because
it is the subject of the recent experimental studies.

The spin interactions in HD+ are expressed in terms
of the angular momentum operators se, Ip, Id, N. Here,
proton spin Ip = 1/2, deuteron spin Id = 1, electron spin
se = 1/2, rotationN = 0, 1, . . .. The situation is depicted
in Figure 4 top.

The spin hamiltonian contains a perhaps surprisingly
large number of terms [33],

Hspin(v,N) = E1N · se + E2N · Ip + E3N · Id
+ E4Ip · se + E5Id · se
+ E6

{
2N2 (

Ip · se
) − 3

[(
N · Ip

)
(N · se)

+ (N · se)
(
N · Ip

)]}
+ E7

{
2N2 (Id · se)− 3 [(N · Id) (N · se)

+ (N · se) (N · Id)]}
+ E8

{
2N2 (

Ip · Id
) − 3

[(
N · Ip

)
(N · Id)

+ (N · Id)
(
N · Ip

)]}
+ E9

[
N2I2d − 3

2
N · Id − 3 (N · Id)2

]
.

(4)

This form is consistent with current experimental
results. Additional small contributions are discussed
in ref. [41]. The nine spin hamiltonian coefficients
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Figure 4. Top: Angular momenta and quadrupole moment in HD+. Bottom: The spin structure for a rovibrational level with N = 1,
indicating the effect of ‘turning on’ the main interactions in sequence, proportional to E4, E5, E1, and finally to all remaining Ei . The
numerical values of the splittings apply to v = 0. G1 is an approximate quantum number for the coupling of electron and proton spin,
G2 for the coupling of G1 and the deuteron spin, and F refers to coupling of G2 and the rotational angular momentum N.

E1(v,N), . . . , E9(v,N) are functions of the rovibrational
level and can be nowadays computed ab initio with
impressive accuracy. The eigenstates of this hamiltonian
are the spin (or hyperfine) states {p}, collectively referred
to as spin (HFS) structure.

We may take as basis for the description of the
spin structure of a given rovibrational level the states
resulting from the addition (coupling) of the angular

momenta se, Ip, Id, N. Independently of the particu-
lar sequence in which they are added, one finds that
there are 4 eigenstates of total angular momentum if
N = 0, 10 if N = 1, and 12 if N ≥ 2. These numbers
hold when the orientational degree of freedom of the
total angular momentum is ignored. These states are
non-degenerate because of the couplings contained in
the hamiltonian. Examples can be seen in Figures 4
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Figure 5. Hyperfine structure of a N = 0 and a N
′ = 1 level of

HD+ and the favouredelectric-dipole (E1) transitions, in zeromag-
netic field. These transitions (coloured arrows) connect lower (p)
and upper (p′) hyperfine states that have the same particle spin
coupling, G1 = G′

1 and G2 = G′
2. The transitions are given a line

label i = i(p, p′). Their frequencies are fline i � 58 THz. G1,G2, F
are approximate or exact quantum numbers that identify the spin
state p = (G1,G2, F). Black lines on the left indicate spin states
p and the values Espin(v,N, p)/h for the lower rovibrational level,
on the right they are Espin(v′,N′, p′)/h for the upper level. Energy
differences between the left and right black lines correspond to
spin frequencies fspin,i . The ground rovibrational level has zero
rotational angular momentum, N = 0, giving rise to 4 spin states
with total angular momentum F = 0, 1, 2. Levels with N = 1
exhibit more (10) spin states because of the additional angular
rotational momentum, and the additional spin interactions. The
additional splittings seen inN = 1 compared toN = 0 are associ-
ated with the electron-spin-to-rotation interaction. Note the shift
of the mean frequencies of the (G′

1,G
′
2) multiplets compared to

the (G1,G2) states, resulting from the v-dependence of the hamil-
tonian coefficients. Spin states are (2F + 1)-fold degenerate in
zero magnetic field (not shown). From ref. [43].

bottom and 5. Including the orientational degree of free-
dom, there are a total of nspin = (2se + 1)(2Ip + 1)(2Id +
1)(2N + 1) states. In a finite magnetic field, they are all
non-degenerate.

It is reasonable to add the four angular momenta
in a sequence corresponding to decreasing interaction
strength as exhibited in the hamiltonian (Figure 4

bottom). The main interaction is due to the elec-
tron–proton interaction E4(v,N)Ip · se. It corresponds to
the hyperfine interaction in the 1s state of the hydro-
gen atom, there leading to the well-known 1.4GHz
(wavelength 21 cm) hyperfine splitting between the
states with total angular momentum F = 0 and F = 1.
In HD+ the interaction is weaker, E4(v = 0,N) �
0.92GHz. Thus, one couples Ip + se = G1, with allowed
quantum numbers G1 = 0, 1.

Next in strength is the deuteron-electron interac-
tion E5(v, L)Id · se with E5(v = 0,N) � 0.14GHz, cor-
responding to the hyperfine interaction in atomic
deuterium. Note that E4, E5 are of order α2ER(me/mp).
Hence, we further couple Id + G1 = G2, with allowed
quantum numbers G2 = 1 if G1 = 0, otherwise G2 =
0, 1, 2.

Then follows the electron spin-rotation interaction
E1(v,N)N · se, with E1(v = 0,N) � 0.03GHz. There-
fore, we couple N + G2 = F, and the quantum numbers
follow as F = Max(G2 − N,N − G2), . . . ,N + G2. The
number of allowed ‘pairings’ (G1,G2, F) for a given value
of N corresponds to the number of spin states nspin
mentioned above.

The coefficients E2, E3, E6, E7, E8, E9 do not cause fur-
ther splittings but slightly shift the already split states. As
for E1, they all are only relevant if the molecule is rotat-
ing, N>0. E9 is proportional to the electric quadrupole
momentQd of the deuteron. It has a very small value, e.g.
E9(v = 0,N = 1) � 5.6 kHz. All coefficients are found in
ref. [33] and subsequent works.

With the above sequence of angular momentum addi-
tion, the basis states are denoted by |G1,G2, F〉 and may
be called ‘pure’ because they are eigenstates of G2

1, G
2
2,

F2. However, because of the couplings in the spin hamil-
tonian, G2

1, G
2
2 do not commute with it and therefore the

pure states are not eigenstates of the hamiltonian. Thus,
G1,G2 are mostly not good quantum numbers, while F
remains a good quantum number in absence of magnetic
field. Then, |G1,G2, F〉 has 2F+ 1 – fold degeneracy.

Eigenstates p and their spin energies Espin(v,N, p)
are found by diagonalising the effective hamiltonian
Hspin(v,N) in the introduced basis. The eigenstates are
mostly (but not always) linear combinations of the pure
states. For identification of an eigenstate p we can use the
quantum numbers G1,G2, F of the particular pure state
to which p would evolve if all interactions were reduced
to very small strengths. The results of the diagonalisaton
for the two ‘simplest’ rotational levelsN = 0, 1 are shown
in Figure 5, together with the state labels p. The calcula-
tion of the spin structure is presented in the Supplemental
Material.

The spin interactions, proportional to Ek(v,N),
weaken with increasing distances between the particles.
Since with increasing vibrational level v the vibrational
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wave function extends to larger internuclear separations
R, the coefficients Ek decrease markedly with v. Also the
rotation modifies the wave function of the molecule and
therefore the coefficients Ek are also N-dependent, albeit
with a much weaker dependence than on v. Summaris-
ing, the basic spin structure remains the same for all v for
a givenN, and for allN>2, given v. But the detailed split-
tings between the spin states p vary with v andN, even in
zeromagnetic field [33,34]. Figure 5 shows an example of
the v, N-dependence.

The spin structure theory can be extended to take into
account the interaction of themagneticmoments with an
externalmagnetic field, leading to the Zeeman effect [42].
The component of the total angular momentum F along
the magnetic field direction, Fz = se,z + Ip,z + Id,z + Nz,
is an observable with an associated good quantum num-
ber mF . The calculation of the Zeeman effect is also
outlined in the Supplemental Material.

(b) H+
2

Being a homonuclear diatomic molecule contain-
ing fermionic nuclei, the total wave function of H+

2

must be antisymmetric under exchange of the protons.
The electronic wave function is symmetric, therefore
the total nuclear wave function must be antisymmet-
ric. It is a product of a nuclear-spin function and a
rovibrational spatial wave function. In levels that have
even N = 0, 2, . . . (so-called para-H+

2 ) the rovibrational
wave function is even under exchange of the protons.
Therefore, the nuclear spin wave function must be odd.
This forces the two proton spins to couple to zero total
nuclear spin angular momentum, I = 0. This leaves an
uncoupled electron spin, leading to G = 1/2. G cou-
ples with the rotational angular momentum N to form
the total angular momentum F. As a consequence, the
levels (v,N = 0) have only one spin state, |I = 0,G =
1/2, F = 1/2〉. Levels (v,N = 2, 4, . . .) have two spin
states, |I = 0,G = 1/2, F = N ± 1/2〉. This simplifica-
tion compared to HD+ is notable. We show the hyper-
fine structure of some rovibrational levels of H+

2 in
Figure 6.

The case of odd N implies instead a total nuclear
spin I = 1 (ortho-H+

2 ). The particular caseN = 1, when
there are 5 spin states, is also exemplified in Figure 6. For
more details, see Supplemental Material.

Figure 6. Hyperfine structure of H+
2 for small v, N. A spin state is denoted by the quantum numbers p = (I,G, F). The values shown in

parentheses are (G, F), where G is the total particle spin and F is the total angular momentum of the molecule, including rotation. Green
arrows: selected spin components of E2 transitions having particularly small systematic effects, suitable for frequency metrology. Their
approximate wavelengths are indicated. From Ref. [48], corrected.
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2.3.3. Accurate hyperfine theory: motivation and
status
As mentioned, substantial effort has been devoted to
developing a highly accurate theory of the hyperfine
(spin) structure of the MHI. Why was this important?

First, many molecules exhibit hyperfine structure
(NMR spectroscopy is based on it); therefore studying it
at the finest level in the simplest molecule is an explo-
ration of the foundations of this kind of physics.

Second, pushing the accuracy of the spin theory to
the same level as existing or near-future data is a typ-
ical challenge in precision physics. Added complexity
comes from the presence of up to four angular momenta
in the MHI. Similar to the computation of the rovi-
brational energies, an accurate solution of the hyperfine
structure problem must include QED contributions and
must therefore start from the fundamental interactions
(obtainable fromNRQED) [44]. Then, tools for the com-
putation of the actual hamiltonian coefficients need to be
established.

Third, there is an opportunity to search for spin-
dependent BSM interactions by comparing theoretical
spin structure predictions with experimental data. Obvi-
ously, for maximum reach, the predictions should be as
accurate as possible.

Fourth, accurate predictions of the spin frequen-
cies can ease the experimenters’ work load when they
aim at determining spin-averaged transition frequencies
f (exp)spin−avg from measured frequencies f (exp)line i , which invari-
ably include also corresponding spin frequencies fspin,i.
While a precise determination of the spin-averaged tran-
sition frequencies from experimental rovibrational spec-
troscopy data is in principle possible without knowledge
about spin frequencies at all [26], or with only approx-
imate knowledge, this requires measuring many spin
components of the given rotational or rovibrational tran-
sition [45], or determining a suitable number of hyperfine
splittings by radiofrequency spectroscopy. Since this is
not always possible, accurate spin frequencies must be
provided by theory. Therefore, on one hand researchers
welcome accurate theoretical spin frequencies, for which
accurate predictions of the coefficients Ei are essential.
On the other hand, whenever researchers measure more
than just one spin component of a rovibrational transi-
tion the data can be used to confront the HFS theory,
confirming or falsifying it.

(a) Spin theory ofHD+

Recently, E4, E5 have been computed for many rovi-
brational levels [46] with account of all contributions
of fractional order α2, so that their fractional uncer-
tainty is of order α3, specifically u4,r � 9 × 10−7 and

u5,r � 6 × 10−7. To achieve this level of theory uncer-
tainty, elegant use has beenmade of the experimental data
on the hyperfine structure of the hydrogen atom. The
coefficients E1, E6, E7 have also recently been theoreti-
cally computedwith reduced theory uncertainty of u1,r �
3 × 10−6, u6,r, u7,r � 2 × 10−6 [38,46,47]. The remain-
ing coefficients E2, E3, E8, E9 have been computed within
the Breit–Pauli approximation, i.e. their fractional uncer-
tainties are approximately equal to α2.

Current theoretical uncertainties of the spin frequen-
cies of recently studiedHD+ rovibrational transitions are
on the order of 0.1 kHz or less [47]. This is a consequence
of (1) the high theoretical accuracies of the E coefficients
and (2) the correlations between the theoretical uncer-
tainties of the E coefficients for the upper (v′,N′) and the
lower rovibrational level (v,N).

(b) Spin theory ofH+
2

The HFS theory formalism is the same for all MHI
family members. For H+

2 the hamiltonian coefficients
have been computed to the similar accuracy as for HD+,
and there is substantial decades-old experimental data to
compare to, see Section 4.1.

2.3.4. The effect of finite nuclear size
Nuclei are not point particles but exhibit a spatial dis-
tribution of mass, charge, magnetisation, and other
properties. The fact that the nuclear charge is smeared
out leads to a ‘nuclear volume shift’ of the energy of
an orbiting electron. This is a well-known effect in
atomic physics and is a relevant effect in MHI preci-
sion spectroscopy as well. Because the electron’s wave-
function is non-zero inside the nucleus, one must
consider that there, the electrostatic interaction Vnuc
between the electron and the extended distribution
of nuclear charge differs from the point-charge-type
Coulomb interaction VC(re) ∝ −Znuce2/re that is a
sufficiently accurate description when the electron is
outside. Here, re is the electron’s position operator rel-
ative to the centre of the nucleus nuc. The result-
ing energy shift may be calculated in first-order per-
turbation theory as Enuc = ∫

nuc |ψel(re)|2(Vnuc(re)−
VC(re))d3re, where the integration is over the nuclear
volume. Since the nuclear diameter is so small (∼10−5a0)
compared to the extent of the electron wavefunction
(∼a0), the latter can be taken as constant over the
nuclear volume, ψel(re) ≈ ψel(re = 0). Obtaining Enuc
then involves the evaluation of the volume integral
over the nuclear electrostatic potential, which requires
nuclear physics data or theory. In the approxima-
tion of a constant nuclear charge density ρnuc, Enuc =
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2ER(2π/3)Znuc(r2nuc/a20)〈δ(re)〉at.u. [25]. The expression
introduces the ‘nuclear charge radius’ Znuc e r2nuc =∫
nuc r

2ρnuc(r)d3r. For the proton and deuteron the values
are rp = 0.8414(19)× 10−15m and rd = 2.12799(74)×
10−15m. Also, 〈δ(re)〉at.u. = |ψel(re = 0)|2a30 is the elec-
tron density in atomic units (dimensionless). Because
a0 ∝ α−1, Enuc is therefore of order α2ER and in the
framework of the separation Equation (2) is assigned to
Erel.

The molecular orbital figure for the 1sσg state
(Figure 2) shows that there is substantial – actually, high-
est – electron density at the two nuclei, and so all rovi-
brational levels are affected by the nuclear volume shift.
The density value is 〈δ(re)〉at.u. ≈ 0.2, whichmay be com-
pared with 〈δ(re)〉at.u. = Z2

nuc/(π n3) for an s-electron of
principal quantum number n in a hydrogen-like atom,
in the approximation of inifinite nuclear mass. The total
Enuc is the sum of the contributions from each nucleus.
The densities at the two nuclei are exactly equal in the
case of the homonuclear MHI, and are nearly equal, to
sub-percent level, in the case of the non-symmetric HD+
[25].

It is intuitively clear that the density |ψ(re = 0)|2
depends on the distance R between the two nuclei.
Indeed, in the limiting case of large distance, the den-
sity at each nucleuswould approach one-half the value for
the hydrogen atom (Znuc = 1), because the wavefunction
near each nucleus approaches the hydrogen wavefunc-
tion times 1/

√
2. For very close nuclei, R → 0, the den-

sity would take on the value for the helium ion (Znuc =
2), i.e. four times as large as in hydrogen. Now, in differ-
ent vibrational states v, the wavefunction of the nuclear
oscillation is spread over a R-range increasing with v,
and also the mean internuclear distance 〈R〉 increases.
Thus, with increasing v the electron density at the nuclei
decreases and so does the nuclear volume shift Enuc(v).
The decrease can be accurately computed [25] and is
approximately 2% for each subsequent v level. For a given
vibrational level, there is also a decrease with increas-
ing rotational angular momentum N, because the mean
value 〈R〉 increases due to centrifugal stretching. As this
is a comparatively small effect, also the decrease of the
nuclear shift is small, e.g. 0.1% in going from N = 0 to
N = 1.

When we consider rotational and vibrational transi-
tions, a nuclear shift effect on the frequencies occurs
precisely because of said variation with v, N. On one
hand, the transition frequency shift is therefore substan-
tially reduced compared to the level shift. On the other
hand, a typical vibrational energy difference is also much
smaller than the absolute energy of the level. These effects
combine into a fractional shift � −2 × 10−9 for a HD+
vibrational transition frequency having moderate v, v′

Table 2. Main dependencies of HD+ transition frequencies
fline = fspin−avg + fspin on the fundamental constants.

Quantity Contribution Main dependencies Relative magnitude

fspin−avg fnonrel R∞ ,me/mp ,me/md 1
frel α, rp , rd 2 × 10−5

fQED α 4 × 10−6

fspin ge , gp , gd ,Qd

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
O(10−5)

(rot. transition)
O(10−7 − 10−8)

(vibr. transition)

Notes: Rightmost column: the indicated relative magnitude of fspin holds
for transitions between levels having moderate values of v,N, v′ ,N′ , and
between spin states p, p′ that have G1 = G′

1, G2 = G′
2 (favoured E1 transi-

tions). Then, fspin is of order 10 MHz or less.

(see also caption of Table 1), while for the fundamen-
tal rotational transition, the fractional shift is actually
approximately twice as large.

Summarising, whereas the nuclear volume shift
appears at first glance to be a minor effect, it is not, given
today’s 10−12-level experimental and theoretical accu-
racies. For comparison, in fractional terms the shift is
comparable to that of the 1s - 2s transition in atomic
hydrogen. Accounting for the nuclear volume shift in the
MHI is essential for being able to contribute to the field of
precision physics at state-of-the-art level. Moreover, the
proton charge radius is of decided interest in the field
of metrology of the fundamental constants (so-called
‘proton radius puzzle’ [1]).

2.3.5. An example of spin-averaged ab initio
frequency
Table 1 presents an example of a theoretical spin-averaged
frequency fspin−avg, and its contributions, for a fourth
overtone transition at 260 THz. Note that the size of the
QED contribution is substantial, approximately−1GHz,
and its uncertainty is 2.1 kHz. These values should be
compared with the current experimental uncertainty,
approximately 1 kHz.

2.3.6. Transition frequencies and fundamental
constants
It is useful to summarise the most relevant dependen-
cies of the contributions to a transition frequency on the
fundamental constants, see Table 2. The table does not
show all dependencies, but only those that could, at least
in principle, lead to a determination of the respective
constant at an interesting level of accuracy.

To start with, all contributions are proportional to the
Rydberg constant. However, because frel, fQED, fspin are
several orders smaller than fnonrel, the current uncertainty
of R∞, 1.9 × 10−12 [1] is irrelevant in comparison to the
theoretical uncertainty of the three quantities. Therefore,
only fnonrel has a relevant dependence on R∞.
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frel, fQED, fspin are proportional to powers of the fine-
structure constant α. But it is today known with uncer-
tainty� 1.5 × 10−10, which is so small that a determina-
tion of α fromMHI is not realistic. We recall that α does
not enter as a separate quantity into fnonrel, but only in the
combination with the electron mass, in R∞.

We come next to the mass ratios mi/me (i = p, d, t
depending on the particular MHI), whose determination
is one of the main opportunities of the precision physics
of MHI. As shown in Section 2.2 the mass ratios appear
at order unity in fnonrel and therefore also in fspin−avg.
The sensitivities ∂fspin−avg(v,N → v′,N′)/∂(mi/me) are
required in order to extract the mass ratios from exper-
imental data. The sensitivities follow from the sensi-
tivities of the level energies, ∂Espin−avg(v,N)/∂(mi/me).
Since Enonrel(v,N) is the dominant contribution to
Espin−avg(v,N), it is sufficient to compute the former’s
sensitivities. Further, in this context, a good approxima-
tion to Enonrel(v,N) are the adiabatic energies E(v,N)
introduced above. Indeed, the so-called non-adiabatic
corrections turn out to be only � 8 × 10−5 fractionally
for a fundamental vibrational transition frequency [52].
When expressed in units of ER, the adiabatic level ener-
gies are the eigenvalues of a dimensionless Schrödinger
equation for motion of a particle of dimensionless mass
μ/me in one spatial dimension, as mentioned earlier.
Thus, for a heteronuclear MHI, instead of separate sen-
sitivities of Espin−avg/ER to the two nuclear mass ratios
(given in rows 18, 19 of Table 4), we are left, to a good
approximation, with a single sensitivity to the reduced
mass ratioμ/me alone [53]. Thus, the approximate calcu-
lation of the sensitivities ∂(E(v, L)/ER)/∂(μ/me) is easily
done.

Finally, we have the nuclear volume contribution to
the transition frequencies discussed in Section 2.3.4.

The above considerations can be expressed by giving
the main dependencies of the spin-averaged transition
frequencies in numerical form. As an example, consider
f5 = fspin−avg(0, 0 → 5, 1),

f (theor)5 /kHz = 259762971051.0(2.1)QED + 0.50�rR∞
− 5.1�rμ/me − 0.33�rrp − 0.32�rrd

= 259762971051.0(2.1)QED(5.1)CODATA18.
(5)

Here, the deviations of the fundamental constants
from their current nominal (CODATA 2018 [1]) val-
ues are expressed in normalised form, �rX = (X −
XCODATA18)/uCODATA18(X) where uCODATA18(X) is the
absolute uncertainty of constant X. (The near-equality
of the last two coefficients is due to the fact that the
difference r2d − r2p has been measured very accurately
with atomic hydrogen spectroscopy.)

Expression (5) indicates, via the absolute values of
the numerical prefactors, how much the uncertainty of
today’s value of each fundamental constant contributes to
the predicted transition frequency. For this, set�rX = 1.
(For precise considerations, the correlations between the
uncertainties uCODATA18(X)must be taken into account.)
We recognise that it is the uncertainty of the mass ratio
μ/me (ur,CODATA18(μ/me) = 4.6 × 10−11) that domi-
nates the uncertainty of f (theor)5 .

We also recognise that for a deviation �rXi to to
become discernible in a comparison between experiment
and prediction, a necessary condition is |�rXi| >
uQED(f

(theor)
5 )/|∂f (theor)5 /∂�rXi|. This is also the lower

bound (since experimental uncertainty is not included)
for the reachable uncertainty in the determination of
Xi via MHI spectroscopy. Given today’s state-of-the-art
uQED(f5) = 2.1 kHz, we realise that even in case of a
negligible experimental accuracy the comparison of the
measured transition frequency f (exp)5 with its predicted
value is not sensitive enough for allowing a compet-
itive determination of either the nuclear charge radii,
or the Rydberg constant. Since similar fractional theo-
retical uncertainties are achieved for other transitions
between rovibrational levels having moderate rotational
and vibrational quantum numbers, this inability also
extends to any such transition, if considered individu-
ally. Unfortunately, the inability apparently also persits if
a rather large set of accurate transition frequencies com-
prising bothH+

2 andHD+ were to become available [54].
The only option at this time appears to be an accurate
determination of the value of the normalised reduced
mass μ/me.

We now turn to the spin frequencies fspin. Although
they directly depend on the g-factors of the electron,
proton and deuteron, it will not be possible to deter-
mine these g-factors with accuracy competitive with
direct measurements on the particles in Penning traps
(e.g. for the proton, ur(gp) � 3 × 10−10, currently). One
issue is that the hamiltonian coefficients Ei have uncer-
tainties larger than 6 × 10−7. A second issue is that
one requires knowledge of the correction factors for the
g-factors of the particles, arising because they are bound
or shielded. The theory of bound-particle g-factors in
MHI has so far only made the first steps [55,56], and to
achieve vast improvements will be challenging, although
not impossible, given the progress on hydrogenlike
systems [2].

The spin frequencies also depend on higher moments
of the nuclear structure, but it does not appear possi-
ble to extract them from MHI studies. In any case, those
moments are also accessible via the hyperfine structure of
atomic hydrogen and deuterium.



14 S. SCHILLER

One dependence on nuclear properties that is poten-
tially relevant for near-future precision studies is that on
the electric quadrupole moment Qd of the deuteron. The
current uncertainty of this quantity (8 × 10−5 [57]) is
comparable with or larger than the uncertainty of the
ab initio spin theory of the corresponding energy con-
tribution (� α2 = 5 × 10−5). Further considerations are
given in Sections 4.1 and 6.3.

2.4. Transitions

2.4.1. Excitation
We distinguish electric-dipole (E1), electric-quadrupole
(E2), and two-photon (TP) transitions. Stimulated
Raman transitions are a further possibility for, in par-
ticular, homonuclear MHI, but will not be discussed
here.

In homonuclear diatomic molecules, the absence of a
permanent dipole moment and the vanishing of electric-
dipole transition matrix elements between rovibrational
levels having moderate v, v′ means that E1 transitions are
forbidden, whereas E2 and TP transitions are allowed.
Because of the fundamental importance of the H+

2
molecule, its E2 transitions were discussed theoretically
already in 1953 [58] – and to this day they have not been
observed. Nevertheless, there is no doubt that they will
become relevant in the near future. E2 transitions are
possible also in heteronuclear diatomics; indeed, a E2
transition has recently been observed in HD+ [59].

For heteronuclear MHI, the standard transition type
used in experiments is E1. E2 transitions are useful for
test purposes, and might become useful for exploring the
HFS.

The three types of transitions obey selection rules and
‘strength rules’. There is a selection rule for the rotational
angular momentum:

E1 transitions: N′ − N = ±1,
E2 transitions: N′ − N = 0,±2, N = 0 → N′ = 0 is

not allowed,
TP transitions: N′ − N = 0,±2.

There is no strict selection rule for v′ − v, but in gen-
eral the transition rate will significantly decrease with
increasing |v′ − v|.

The theory for the transition rates, taking into account
that the transitions occur between spin states, has been
worked out for the different transition types for several
MHI [40,42,60,61]. As an example, Figure 5 presents,
for HD+, the so-called favoured spin components of a
rovibrational transition, i.e. those E1 transitions having
a large electric-dipole transition moment. For these, a
‘spin selection rule’ holds, requiring that the approximate

quantum numbers G1, G2 do not change, allowing only
for changes of the total angular momentum, F′ − F =
0,±1. Figure 6 instead shows examples of (proposed) E2
transitions in the homonuclear H+

2 .

2.4.2. Spontaneous decay
Spontaneous decay in heteronuclear MHI proceeds via
E1 transitions. The rates for HD+ for a set of transitions
were computed in ref. [62] and a more extensive tabula-
tion is found in ref. [63]. Twomain featuresmay be noted:
the decay of a vibrationally excited upper state v′ proceeds
dominantly via a reduction of the vibrational quantum
number by one unit,�v = v′ − v = +1, and the lifetime
is a few tens of milliseconds. This rather long lifetime is
due to its scaling with the inverse square of the transition
dipole moment and with the inverse cube of the transi-
tion frequency. The latter is comparatively small between
neighbouring vibrational levels (�60 THz), and transi-
tion dipole moments for�v = 1 are moderate, less than
0.1 × e a0 [64]. The rate for spontaneous transitions with
�v > 1 is smaller than for �v = 1 because the squared
transition dipole moment decreases faster with �v than
the cube of the transition frequency increases [64]. In
v = 0, spontaneous decay occurs only via rotational tran-
sitions. Due to the even smaller transition frequencies,
the decay rate between adjacent rotational levels in this
manifold is much smaller than between vibrational lev-
els, resulting in e.g. a long lifetime of 140 s for the level
(v = 0,N = 1) against decay to N = 0.

In homonuclear ions, only E2 transitions can occur,
and the lifetimes are days to weeks [65,66]. Amazingly,
such extremely slow decays can actually be followed ‘in
real time’: a single H+

2 ion stored for weeks in a cryogenic
vacuum in a Penning trap has been followed as it decayed
step-wise from v = 9 to v = 0 within one month [67]. It
should be noted that decay rates in the strong magnetic
field of a Penning trap are somewhat modified compared
to free space [68].

2.4.3. Black-body radiation-induced transitions
In heteronuclear MHI the black-body radiation (BBR)
associated with the finite temperature Tbb of the ves-
sel surrounding the MHI can induce E1 transitions
from lower-energy to higher-energy levels [69,70].
Given the large energy separations between vibrational
levels (e.g. E(v′ = 1,N′ = 1)− E(v = 0,N = 0) � kB ×
2700K) compared to room-temperature thermal energy,
this effect does not in practice induce vibrational exci-
tation at a relevant rate, but only rotational excitation.
Furthermore, it is only effective between rotational levels
in the v = 0 manifold, since these have long natural life-
times against spontaneous emission. Besides this absorp-
tion of BBR, also stimulated emission by BBR is possible,
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a ‘downward’ process. The two types of processes are
responsible for establishing thermal equilibrium between
the rotational level population and the BBR heat bath.

As a result, in a heteronuclear MHI the thermal
population of levels v ≥ 1 is negligible. The fractional
populations of levels (v = 0,N) are given by P(N) =
S(N)/

∑∞
N=0 S(N), with S(N) = (2N + 1) exp(−δ

Espin−avg(v = 0,N)/kBTbb) Note the factor (2N + 1)
describing the degeneracy of a level of given rotational
angular momentum. (The degeneracy of the particle
spins does not appear in the formula because it is the
same in all rotational levels and thus cancels). A reason-
able approximation for the energy offset is δEspin−avg(v =
0,N) � N(N + 1)hfrot/2. This becomes exact in the
absence of centrifugal stretching. The fundamental rota-
tional frequency is given in Equation (1). Figure 9, right
panel, indicates graphically by the green discs’ areas the
relative populations P(N) for HD+ at Tbb = 300K. Sev-
eral rotational levels are substantially populated, and the
largest population is P(N = 2) � 0.27.

For homonuclear MHI, the expression for P(N) dif-
fers, because the rotational wavefunction symmetrymust
be taken into account. Due to the absence of E1 tran-
sitions, a thermal equilibrium is not naturally present
in a trapped homonuclear ensemble in ultra-high vac-
uum. One situation where thermal equilibrium might be
reached is under collisions with a helium buffer gas [48].

3. Recent experimental studies

3.1. The experimental technique

3.1.1. Introduction
Given that spectroscopy of the MHI had been per-
formedwith various techniques over the course of several
decades (see Sec. 1.3), in themid-1990s it became clear to
the author that a new approach was needed for progress-
ing towards much higher accuracy. Sympathetic cooling
of MHI by laser-cooled beryllium atomic ions in a linear
radiofrequency (RF) ion trap was expected to provide a
suitable environment for accurate spectroscopy of MHI,
namely ultra-low ion temperature in the milli-kelvin
range and spatial localisation. A line of reasearch based
on this idea was initiated by the author in the late 1990s
[23,75]. The stated conditions promised a small Doppler
width of the spectral lines and eventually spectroscopy
in the Dicke regime, without time-of-flight broadening
and with only a moderate second-order Doppler shift. If
UHV conditions were achieved in the trap, also a nearly
collision-free environment would be provided, virtually
removing collision-induced broadening and frequency
shifts, and allowing level lifetimes close to their natural
values and thus narrowest spectroscopic linewidths. The

localisation would also simplify the determination of sys-
tematic shifts, for example due to any applied or residual
magnetic field.

3.1.2. Trapping of ions
The linear ion trap, in combination with laser-cooling, is
today a well-established tool for precision spectroscopy
of atomic ions, including the realisation of quantum
information processing. Textbooks treating the funda-
mentals of ion trapping are refs. [72–74]. The precision
spectroscopy of molecular ions in ion traps is still not
a widely employed technique, because of the complex-
ity of preparing and controlling the molecular species in
addition to the necessary atomic species.

Briefly, the linear ion trap consists of four, often cylin-
drical electrodes aligned parallel along the z axis, the
so-called trap axis. A transverse two-dimensional (x, y),
alternating electric field is established between them by a
radio-frequency (RF) amplifier circuit, with a typical fre-
quency of 15 MHz. When the amplitude of the electric
field is suitably chosen, a charged particle can be trapped
in transverse direction, meaning that it oscillates back
and forth in the x –y-plane. Thismotion can be described
as occurring in an effective (time-averaged) potential,
called secular potential, that is approximately parabolic,
Vsec(x, y) ∝ x2 + y2.

One also desires that the axial (z) motion of the ion
remains bounded. This is accomplished by adding two
sets of electrodes at positions ±ze and applying an equal
positive static voltage to them; this confines positively
charged particles.

A linear ion trap is rather ‘spacey’; therefore it is possi-
ble to simultaneously confine many ions of equal charge
sign in it. It is even possible to confine ions of different
mass-to-charge ratio m/Q, although there are limits to
the allowed disparity of their m/Q values. A trap can be
loaded with ions by ionising gas phase neutral atoms or
molecules that happen to be in the inner trap volume.
Ionisation can occur via bombardment with electrons
emitted towards that volume by an electron gun, or by
laser photoionisation.

A crucial extension of the capability of ion trapping
is laser cooling. Trapped atomic ions can be laser-cooled
by a suitable laser. The process vastly reduces the kinetic
energy of the atomic ions, and the residual kinetic energy
is associated with random motion. Therefore one speaks
about an ion temperature, Tsec.

It is feasible to simultaneously trap atomic ions that
are directly laser-cooled and other (atomic or molecular)
ions that are not laser-cooled. Although the interaction
between the dissimilar ions is repulsive, the laser-cooled
ions remove kinetic energy from the non-laser-cooled
ions. This is called sympathetic cooling. The end result
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Figure 7. Spectroscopy of sympathetically cooledHD+ ions: an artist’s impression. The z axis runs from the lower left corner to the upper
right corner of the image. Two of the four axial electrodes are shown in gray. The laser-cooled atomic ions are shown as blue balls, the
sympathetically cooled MHI as yellow-red dumbbells. Blue is the cooling laser beam, green are the REMPD beams. The brown ellipses
symbolise the spectroscopy radiation propagating along the transverse direction. Picture from S. Alighanbari, M. G. Hansen, S. Schiller.

is that the kinetic energy of all ions is reduced to a very
large extent, especially if the non-laser-cooled ions have a
larger charge-squared-to-mass ratio. An early review on
sympathetic cooling of molecular ions is ref. [75].

Interestingly, when the field was nascent it had been
stated in a theoretical study that sympathetic cooling of
MHI in a linear RF trap would not be possible. For this
reason, extensive numerical simulations were performed
to verify this claim [76]; fortunately they pointed to the
contrary. Finally, the experimental proof of the feasibility
occurred in 2004 [24]. Figure 7 gives an artist’s view of
an ensemble of trapped and sympathetically cooled MHI
undergoing spectroscopic excitation.

3.1.3. Mixed-species Coulomb clusters
An ensemble of cold beryllium ions (mass m = 9 u)
trapped in a RF trap arrange in an ellipsoid-shaped clus-
ter if the axial (z) trapping potential is sufficiently weaker
than the radial (x, y) trapping potential [77]. ‘Cold’ refers
to the kinetic energy and this state is achieved by laser
cooling the beryllium ions. IfMHI are added to the beryl-
liumensemble, and if their numberNMHI ismuch smaller
than the number of beryllium ions, they are efficiently
cooled as well. The overall shape of the cold two-species
cluster does not change substantially since the MHI
arrange close to or on the trap axis z. The underlying rea-
son for this arrangement is that the secular radial poten-
tial experienced by an ion, Vsec(x, y) = mω2

sec,m(x2 +
y2)/2 scales approximately inversely with the mass m of
the ion. Indeed, the radial secular oscillation frequency
ωsec,m ∝ Q/m, approximately, for typical trap operating

parameters [78]. Thus, the total energy (secular poten-
tial energy plus inter-particle potential energy) of the
two-species ensemble is minimised in static equilibrium
(i.e. if the ions are cold) if the lighter MHI, instead of
the heavier beryllium ions, arrange close to or on the z
axis, where this secular potential is weak or zero. When
the number of MHI is quite small, the ions arrange in a
string on the z-axis. This string expands to a tube as the
number increases, simply because there are ‘no vacancies
left’ on the trap axis. These simple facts are easily found
by performing molecular dynamics simulations of two-
species clusters [24] or by simply calculating minimum-
total-energy configurations of a mixed ion ensemble in
their respective secular potentials (e.g. using Mathemat-
ica). Figure 8 shows an experimental CCD image of a
Be+/HD+ Coulomb cluster and a computed image of a
typical cluster. We point out an experimental study [79]
of a two-atomic-species Coulomb cluster that beautifully
imaged the arrangement of the lighter ions into a string
surrounded by heavy ions, via laser-induced fluorescence
of the lighter ions.

The particular interest of Be+/MHI clusters in which
the MHI arrange into a string is that this leads, ide-
ally, not only to zero time-averaged radial coordinates,
〈xj〉 = 〈yj〉 = 0 for each ion j but also to small radial

position spreads
√

〈x2j 〉,
√

〈y2j 〉. The spreads are approx-
imately equal and will be denoted by xrms. They are the
consequence of the residual thermal (Brownian) motion
of the MHIs, under the influence of all forces. This
motion remains present even under sympathetic cool-
ing, since the laser cooling is not able to cool the atomic
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Figure 8. Top: CCD image of the 313 nm Be+ ion fluorescence of
a two-species Coulombcluster. Thedarker horizontal line contains
sympathetically cooled HD+ ions. Bottom: A cluster simulated by
molecular dynamics calculation. The propagation direction of a
spectroscopy wave used for one-photon spectroscopy is super-
posed. The simulation was performed for 2000 Be+ ions, 50 HD+
ions, Tsec = 10mK. The indicated HD+ x coordinate range (4μm)
is approximate. Data from S. Alighanbari et al.

ions to absolute zero temperature, but only to the so-
called Doppler limit. Thus, their residual motion affects
also the MHI via the Coulomb interaction. Additional
heating effects may occur, but this issue and the topic of
micromotion are beyond the scope of this introduction.

If we assume that theMHI transversemotion ismostly
influenced by the secular potential, then we can invoke
the equipartition law to relate one ‘unit’ of secular ther-
mal energy to the r.m.s. secular potential energy of one
transverse degree of freedom, kBTsec/2 = 〈Vsec(x)〉 =
mMHIω

2
sec,MHIx

2
rms/2. Numerically, for a secular temper-

ature Tsec � 1mK (a value moderately larger than the
Doppler cooling limit for Be+), xrms � 0.3μm if the sec-
ular frequency ωsec,HD+ � 2π × 0.8MHz, typical for a
macroscopic RF trap.

3.1.4. Spectroscopy
All rotational and vibrational MHI spectroscopy exper-
iments to date [11,14,80–82] have used techniques in
which theMHIwas destroyed after its excitation. Figure 9
(left) shows one recent spectroscopy scenario applied
to trapped MHI. Both spectroscopy radiation and addi-
tional optical radiation for achieving photodissociation
from the excited state are applied.Molecules remaining in
the lower spectroscopy state are not or not substantially
affected by the photodissociation field. This is a simple
example of ‘resonance enhanced multi-photon dissocia-
tion (REMPD)’. The products of a dissociated MHI (in
case of HD+, a neutral D atom and a proton) do not

remain trapped, since the ion trap field does not sup-
port a stable confinement of the light proton. Thus, the
spectroscopic excitation of a MHI results in its removal
from the trap. Figure 10 shows a timing diagram of
the relevant processes. A refinement consists in applying
the two radiation fields in alternating manner, in order
to avoid the light shifts that the photodissociation field
may induce on the spectroscopy states. This is possi-
ble thanks to the metastability of the upper spectroscopy
state (Section 2.4.2).

The MHI loss can be detected by the technique of
secular excitation as follows. The radial secular oscilla-
tion of the trapped MHI, at frequency ωsec,MHI, can be
resonantly excited by applying a small a.c. voltage hav-
ing the same frequency to an electrode close to the trap.
Via Coulomb ion-ion interactions, theMHIs’ oscillations
pump energy also into the beryllium ion ensemble, that
consequently heats up. This leads to a detectable change
in its fluorescence, as follows. The beryllium ions are usu-
ally continuously irradiated by the cooling laser that is
kept at a fixed negative detuning from atomic resonance,
so as to effect the laser cooling. Any induced increase
in beryllium temperature leads to spectral broadening of
the atomic transition line due to an increased thermal
Doppler effect. This causes a change of absorption from
the cooling laser and consequently of fluorescence rate.
The change is approximately proportional to the num-
ber of MHI and the secular excitation voltage amplitude.
Finally, the molecules’ spectroscopic signal is the differ-
ence between the Be+ fluorescence level recorded during
a secular excitation before and after the application of
the spectroscopy and REMPD waves (dashed horizon-
tal lines in Figure 10), normalised to the first level. The
figure presents one single spectroscopy cycle, generating
a single data point, said fractional difference of beryl-
lium fluorescence level. The spectroscopy cycle must be
repeated many times for a given frequency of the spec-
troscopy wave. The mean value of the acquired data set
represents the strength of the spectroscopic excitation at
that frequency. To obtain the full lineshape of a spec-
troscopic transition line, the procedure is repeated for a
(typically small) set of frequencies. Because the exper-
iments are performed with small MHI ensembles, new
ensemblesmust be loaded after typically every five cycles.
This leads to long experiment durations for a acquiring
even a single line.

3.1.5. Rotational cooling
Optionally, a rotational cooling phase precedes the spec-
troscopy, in particular if the level (v = 0,N = 0) of a
heteronuclear MHI is selected to be the lower level for
spectroscopic excitation. In thermal equilibrium, only a
fraction P(N = 0) � 0.10 of HD+ ions are in this level
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Figure 9. Left: Rotational spectroscopy by REMPD. The green disk areas represent the populations after rotational cooling and before
subsequent REMPD. The thick brown arrow is the spectroscopy radiation. Right: Rotational laser cooling phase optionally preceding
the spectroscopy phase. Full arrows are laser-driven transitions. The dashed light brown arrows indicate relevant spontaneous emission
processes. The black line is a BBR-driven emission process. Green disk areas represent the fractional populations in thermal equilibrium
at 300 K.

Figure 10. Timing diagram and data of one cycle of state preparation and spectroscopy. Beryllium laser cooling is on all the time. Rota-
tional cooling (red) is performed first. Green, ‘ REMPD’ : rotational spectroscopy phase, i.e. the spectroscopy wave and the REMPD lasers
are turned on. Magenta, SE: secular excitation of theMHI is turned on (simultaneously or alternatingly). Grey: the fluorescence rate of the
laser-cooled beryllium ions. Cyan and dotted horizontal lines: the change of fluorescence rate after application of REMPD; it is propor-
tional to the number of dissociated MHI. ‘ B’ : a magnetic flux strength B is applied during REMPD. ‘B0’ : a different strength B0 is applied
during rotational laser cooling. CPS: counts per second. From ref. [45].

(Section 2.4.3). Laser rotational cooling [70] is able to
increase substantially this fraction, by transfering popu-
lation residing in levels (v = 0,N > 0) to the level (v =
0,N = 0). The principle is presented in Figure 9, right
panel. Two mid-infrared laser waves excite those MHI
that happen to be in level (v = 0,N = 1) or (v = 0,N =
2). Spontaneous emission from the respective excited lev-
els (2, 0) or (1, 1) leads to partial decay into the ground
rovibrational level (0, 0) according to corresponding
branching ratios. If decay occurs into other levels, fur-
ther laser excitation will take place until the MHI end

up in (0, 0). In practice, in steady-state, some 60–75%
of the MHI are transferred into the goal level (0, 0).
Although this is not perfect, the substantial increase in
population has allowed the precision measurements of
refs. [43,45,51].

Accurate vibrational spectroscopy has also been
achieved without laser rotational cooling [82]. In order
to obtain sufficiently large signals, the lower spectroscopy
level was chosen to be (v = 0,N = 3), whose thermal
occupation probabilityP(N = 3) ismaximum in thermal
equilibrium.
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Figure 11. Overview of transitions measured with high accuracy
(f0, f1, f5, f9) or high resolution (f2 [59]).

3.2. Results

3.2.1. Observation of ultranarrow transitions
Figure 11 shows theMHI rotational and vibrational tran-
sitions measured to date with accuracy better than 1 part
in 109. These measurements were all done on spectral
lines whose Doppler broadening was suppressed. There-
fore, the experiments could resolve individual spin com-
ponents (v,N, p) → (v′,N′, p′). The absence of Doppler
broadening was a result of either the employed spec-
troscopic technique (two-photon spectroscopy), or of
particularly good spatial confinement of the MHI.

Confinement can lead to linewidth narrowing via the
Dicke effect. The simplest model of this effect considers
an atom moving between two walls separated by a dis-
tance a. When a < λ/π the probability of emission with
the recoil momentum being given to the walls becomes
substantial, i.e. the emission spectrum consists mostly
of a sharp line with a weak Doppler-broadened back-
ground. The recoil-free probability steadily decreases
with increasing a, nevertheless a sharp line still occurs
even if a � 3λ/2.

In Section 3.1.3 we discussed the radial range xrms of
theMHI confined near the axis of the trap.Wemaymake
the approximate correspondence a � 2 xrms, implying
that the regime of dominant recoil-free emission is λ >
2π xrms for one-photon transitions. In absorption, which
is relevant for MHI spectroscopy, the same condition
holds. An alternative description of the condition for the
Dicke effect is 〈exp(i k · rj(t)〉 �O(1), where rj(t) is the
position of MHI j, and 〈· · · 〉 is the time average, and k is
the wavevector of the spectroscopy radiation.

According to molecular dynamics simulations, the
radial confinement in a string of MHI is xrms � 0.3μm

when Tsec � 1mK, increasing to xrms � 1.7μm when
Tsec � 12mK. For the tube configuration, the value at
this temperature is substantially larger, xrms � 8.4μm
[83]. These levels of confinement can be taken advantage
of by directing the spectroscopy radiation at right angle
to the trap axis.

Thus, for spectroscopy of the fundamental rotational
transition (f0 � 1.3 THz, λ � 230μm) the wavelength is
larger than 2π xrms even with the MHI at 12mK and
arranged in a tube. In case of the fundamental vibrational
transition (v = 0 → v′ = 1, λ = 5.1μm ) theDicke con-
dition is satisfied if the ions are at 1 mK and in a string
configuration [43]. High overtone transitions have spec-
troscopy wavelengths so short (e.g. f5 with 1.1μm) that
the the Dicke condition is not satisfied any more.

The situation is different for experiments employ-
ing two-photon spectroscopy with counter-propagating
beams of (nearly) equal frequency. The net momentum
associated with simultaneous absorption of one photon
from each beam is (nearly) zero. Past studies unrelated to
MHI have demonstrated that a narrow Doppler-free line
occurs in two-photon spectroscopywith equal-frequency
beams even in a low-density gas, where the particle
motion is unrestricted. In the two-photon spectroscopy
of the (0, 3) → (9, 3) transition of trapped cold HD+
(f9 [82]) two counter-propagating waves with dissimilar
wavelengths 1442.4 nm, 1445.3 nm were employed. This
was required in order to obtain a near-resonance with
an intermediate level, (4, 2). The effective two-photon
wave vector k1 − k2, with |k1 − k2|−1 � 9 × 10−3/μm,
is so small that the condition for occurrence of a Dicke-
narrowed line, 〈exp(i (k1 − k2) · rj(t)〉 � O(1), is satis-
fied even if the ions are contained in a tube of relatively
large radius, � 50μm, instead of in a string.

3.2.2. Status of experiments
The importance of a particular spectroscopy experiment
depends on the achieved level of control or determi-
nation of the systematic shifts. This level can be the
better, the higher the achieved line resolution. One fun-
damental contribution to the line resolution is the spec-
tral linewidth of the employed spectroscopy radiation
source. In rotational spectroscopy, use has been made
of a THz source that is implemented as an upconverter
of a microwave. When referenced to a hydrogen maser,
such a THz source exhibits a linewidth at the sub-Hz
level, as measurements have shown [83,84], and its fre-
quency instability is smaller than this level. The sub-Hz
level is much smaller than the current theory uncertainty
of both the spin frequencies (20–120Hz, Table 3) and
the QED contributions (19Hz, Table 4), and therefore
such a source is a powerful spectroscopy tool to mea-
sure the hyperfine structure precisely. While it has been
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used only on HD+, it could in the future equally well
be used on HT+ or DT+. The narrowest line (in abso-
lute terms) observed to date is indeed a spin component
of the HD+ rotational transition, having approximately
4 Hz linewidth [45].

In the rotational transition study [45], typical spec-
troscopic linewidths were approximately 20Hz. With
such linewidths and the need to determine the sub-
stantial systematic shifts, the uncertainties of the tran-
sition frequencies of various spin components resulted
being (1.3 − 5)× 10−11. These are approximately one
order less accurate than vibrational results and thus indi-
vidually moderately competitive for most applications
of MHI. However, the absolute uncertainties, 17–64Hz,

were small enough to yield upper-state hyperfine split-
tings Espin(v′,N′, p)− Espin(v′,N′, p′) and combinations
of spin frequencies (�fspin,i,j = fspin,i − fspin,j) having
substantially better accuracy thanwhat has been obtained
so far from vibrational spectroscopy. Therefore the rota-
tional data can be used to test the spin structure theory
and in this respect, rotational spectroscopy is a useful
addition to RF spectroscopy.

Turning to vibrational transitions, we point out their
advantage that several of the systematic shifts enumer-
ated in the next subsection are only weakly depen-
dent on the vibrational quantum number and therefore
become smaller in fractional termswith increasing vibra-
tional transition frequency. The fractional contribution is

Table 3. Comparison between the HD+ hyperfine structure theory prediction and data from high-accuracy rotational and vibrational
transition frequency measurements. In the analyses leading to the shown numbers, no fits of HFS hamiltonian coefficients were
performed.

transition (v,N) → (v′ ,N′) n exp.−theory (kHz) uexp (kHz) utheor (kHz) ∂�fspin/∂Qd

f0: (0, 0) → (0, 1) 6 −0.95 to + 0.30 0.04 to 0.09 [45] 0.02 to 0.12 27 kHz/Qd(*)
f1: (0, 0) → (1, 1) 2 0.39 0.32 [43] 0.12 14 kHz/Qd
f5: (0, 0) → (5, 1) 2 0.6 1.2 [51] 0.1 12 kHz/Qd
f9: (0, 3) → (9, 3) 2 8.4 0.9 [85] 0.3 0.004 kHz/Qd

Notes: Columns 3 to 6 refer to spin frequency differences�fspin,i,j = fspin,i − fspin,j . n is the number of measured spin components. The values in columns 3, 5 are

from ref. [47]. The values in the last column are obtained from the sensitivities γ ′
i,9 = ∂ f (theor)spin,i /∂E ′

9 and, if N = 0, γ i,9 = ∂ f (theor)spin,i /∂E9 reported in the listed
references or computed here, using the values of E9(v,N) from ref. [33] and [49]. (*) This value refers to a spin frequency difference (i = 20, j = 12) for which
uexp = 0.072 kHz, utheor = 0.064 kHz, exp.−theory= −0.95 kHz. See text for a discussion.

Table 4. Transitions of the HD+ molecule that have been measured and calculated with high accuracy [43,45,51,85]. In the analysis
leading to the rotational transition frequency f0 two HFS hamiltonian coefficients were fitted.

Transition (0, 0 → (5, 1) (0, 0) → (0, 1) (0, 0) → (1, 1) (0, 3) → (9, 3)
Reference Alighanbari et al. (2020, 2023) Alighanbari et al. (2020, 2023) Kortunov et al. (2021) Germann et al. (2021)∗ row

Experiment f5 f0 f1 f9 1
Frequency (kHz) 259762971051.24 1314925753.000 58605052164.19 415264925501.43 2

exp.unc.(frac., abs.) 2.3 × 10−12, 0.60 kHz 1.2 × 10−11, 0.015 kHz 2.6 × 10−12, 0.15 kHz 1.1 × 10−12, 0.46 kHz 3
Theory f5 f0 f1 f9 4
Frequency (kHz) 259762971050.97 1314925752.932 58605052163.92 415264925502.84 5
Spin theory unc.(frac., abs.) 1.4 × 10−13, 0.036 kHz 2 × 10−12, 0.002 kHz 4.1 × 10−13, 0.024 kHz 1.9 × 10−13, 0.081 kHz 6
QED theory unc.(frac., abs.) 8.1 × 10−12, 2.1 kHz 1.4 × 10−11, 0.019 kHz 8.5 × 10−12, 0.50 kHz 7.9 × 10−12, 3.3 kHz 7
CODATA 2018 unc.(frac., abs.) 1.9 × 10−11, 5.1 kHz 4.6 × 10−11, 0.061 kHz 2.2 × 10−11, 1.3 kHz 1.6 × 10−11, 6.6 kHz 8

Experiment – theory (kHz) 0.27(5.5)tot 0.069(0.066)tot 0.27(1.4)tot −1.4(7.4)tot 9
frac. tot. unc. 2.1 × 10−11 5.0 × 10−11 2.4 × 10−11 1.8 × 10−11 10

theor. frac. contrib. from:
nuclear radii −2.1 × 10−9 −3.6 × 10−9 −2.2 × 10−9 −2.0 × 10−9 11
O(α2) incl. nucl. radii 1.5 × 10−5 3.7 × 10−5 1.7 × 10−5 1.4 × 10−5 12
O(α3) −4.1 × 10−6 −7.1 × 10−6 −4.3 × 10−6 −4.0 × 10−6 13
O(α4) −2.9 × 10−8 −5.0 × 10−8 −3.0 × 10−8 −2.8 × 10−8 14
O(α5) 1.8 × 10−9 3.0 × 10−9 1.9 × 10−9 1.8 × 10−9 15
O(α6) −1.3 × 10−11 −1.2 × 10−11 −1.3 × 10−11 −1.3 × 10−11 16
Other 4. × 10−12 7. × 10−12 4. × 10−12 4. × 10−12 17
d(ln f/d(ln(mp/me)) −2.82 × 10−1 −6.58 × 10−1 −3.23 × 10−1 −2.35 × 10−1 18
d(ln f/d(ln(md/me)) −1.41 × 10−1 −3.29 × 10−1 −1.62 × 10−1 −1.17 × 10−1 19

µ/me = mpmd/me
(
mp + md

)
HD+ spectroscopy 1223.899228720(25) 1223.899228658(23) 1223.899228711(22) 1223.899228735(28) 20
CODATA 2018 1223.899228723(56) 21
Penning Traps 1223.899228642(37) 22

Notes: In rows 11 to 19 we present the fractional contributions to the transition frequencies, as computed ab initio, as well as the fractional sensitivities of the
frequencies to the mass ratios. In the bottom section of the table the values of the normalised reduced nuclear mass are given, respectively determined from
the individual HD+ transition frequencies, reported by the CODATA 2018 committee, and from Penning trap measurements. The latter is computed using the
CODATA 2018 value forme/u (that relies mostly on ref. [92]),md/u [93], andmd/mp [67]. ∗ Reanalyzed in ref. [51].
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approximately two orders smaller than for the rotational
transition. Taking advantage of these facts is of crucial
importance for most applications of MHI. The Zeeman
shift is a particularly important example in this respect.

However, the linewidths of the optical radiation deliv-
ered to MHI in vibrational spectroscopy have, until to
date, been substantially larger in absolute terms than in
the case of rotational spectroscopy. One reason is the
complexity of production and transport of ultranarrow-
linewidth optical radiation from the source – invariably
some laser stabilised to an ultrastable optical cavity – to
the ion trap. Another reason is that the spectroscopywave
intensity may have to be set so as to obtain sufficiently
strong signals and this may also cause undesired power
(saturation) broadening of the transition. Among pub-
lished resuts, the vibrational transition with the highest
observed line resolution showed a linewidth of approx-
imately 400 Hz, at a frequency f5 � 260 THz [51]. It is
a notable result that the corresponding line resolution is
equal to the best value observed so far in rotational spec-
troscopy. After correction for the systematic shifts, the
accuracies of the spin component transition frequencies
of the f5 transition were �0.8 kHz (3.3 × 10−12). The
spin components of the two-photon transition f9 have the
highest fractional accuracy achieved experimentally to
date, � 1.5 × 10−12 (� 0.6 kHz) [85]. These values (and
the quality of spin theory) imply that spin-averaged fre-
quencies can be derived with excellent fractional uncer-
tainties. However, the combinations of spin frequen-
cies,�fspin,i,j, obtained from these vibrational transitions
carry � 1 kHz experimental uncertainty, much larger
than obtained with the rotational transition, and are thus
less useful for testing HFS precisely.

3.2.3. Systematic shifts
As in atomic ion spectroscopy, a sizable number of sys-
tematic shifts are encountered in precision MHI spec-
troscopy. The reasons for their presence range from fun-
damental to technical. The following must be taken into
account:

(1) The Zeeman effect, present because a magnetic
field is applied in the trapping region for laser
cooling of the beryllium ions, or because the envi-
ronmental field has not been fully compensated.

(2) A light shift (a.c. Stark shift) caused by the laser
light required for beryllium ion laser cooling, if it
is kept on during MHI spectroscopy. In current
experiments using ion clusters, it is not possible,
in terms of spatial overlap, to avoid the cool-
ing laser wave irradiating the MHI. However, the
power of this cooling light (313 nm) is low (tens
of μW), so the light shift is small.

(3) Light shifts caused by the laser wave(s) involved
in the REMPD process, in particular the pho-
todissociation wave, unless they are turned
off during MHI excitation. These light shifts,
and the previous one, are proportional to the
corresponding frequency-dependent molecular
polarisability.

(4) The spectroscopy wave has a finite intensity and
also potentially causes a light shift.

(5) The vacuum chamber hosting the ion trap is typ-
ically at room temperature. Thus, a BBR-induced
light shift occurs.

(6) The MHI are subjected to a trap-related elec-
tric field gradient that couples to the molecular
electric quadrupole moment and produces shifts.

(7) The absorption of the photonmay cause theMHI
to recoil. The corresponding kinetic energy must
be provided by the photon. As a consequence, the
resonance would be shifted to higher frequency,
by an amount�frec = hf 2/2mMHIc2.

(8) An important shift is caused by the trap RF elec-
tric field [45]. The shift has been found to increase
with the square of the RF drive voltage amplitude,
which indicates that it may be due to the a.c. Stark
shift and/or the a.c. Zeeman shift. The a.c. Stark
shift is proportional to the squared electric field
and to the a.c. polarisability of the molecule,
and occurs both in homo- and heteronuclear
MHI. The polarisability values are species- and
state-dependent [86]. A non-zero time-averaged
squared electric field may occur if the MHI is not
confined to a node of the RF field, and this can
result from the finite temperature, spurious d.c.
potentials, electrical noise and ion-ion interac-
tions. An a.c. Zeeman shift would be caused by
the a.c. currents flowing in and out of the trap
electrodes, producing an a.c. magnetic field at the
frequency of the RF drive. If an MHI experiences
a non-zero mean electric field, an additional shift
may occur, the d.c. Stark shift, proportional to the
d.c. polarisability of the MHI.

The molecular sensitivities to some of these shifts can
be computed ab initio, e.g. the Zeeman shift [42], the elec-
tric quadrupole shift [87], the BBR shift, and spin-state
dependent a.c. Stark (light) shift [86] (see also [45,51]).
Together with a measurement or estimate of the relevant
perturbing field (e.g. laser intensity), the corresponding
shift can then be estimated.

In practice, it is desirable to determine the shifts, or
the absence thereof, experimentally, whenever possible.
For this, one repeats the measurement of transition fre-
quency under different conditions: different values of the
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applied magnetic field, the cooling laser intensity, the
spectroscopy laser intensity, and the dissociation laser
intensity. As mentioned earlier, it is possible to irra-
diate the REMPD laser(s) and the spectroscopy laser
alternately for a desired total duration. Then, the spec-
troscopic transition is not influenced by the REMPD
laser(s). The temperature of the BBR is not easily changed
substantially, therefore one relies on the theoretical cal-
culation. It predicts the shift to be negligible. The trap-
drive-related shifts may be characterised by repeating the
measurements (i) for different RF amplitudes, (ii) at non-
nominal trap operating conditions. The latter is imple-
mented by applying substantial d.c. voltages to some trap
electrodes, causing a substantial (visible) displacement of
the atomic ion subensemble in transverse direction.

The presence or absence of a recoil shift cannot be
ascertained easily, unless it would be possible to study
the same transition under two fundamentally different
conditions, e.g. under one-photon andunder two-photon
excitation, or in a cluster and on an isolated single ion.
For a rotational transition, �frec is of 1-hertz level and
negligible, if at all present. For a high overtone transi-
tion, for example f5, if present, the recoil shift would
be so large (� 50 kHz) as to be well beyond any the-
oretical, CODATA 2018, or experimental uncertainty
(after correcting for the other systematic shifts described
here). Its presence or absence could then be determined
with a high degree of confidence. This has indeed been
done. More challenging is the case of the fundamen-
tal vibrational transition, where a hypothetical recoil
shift (2.5 kHz) is comparable to the total uncertainty
arising from theory, CODATA, and experiment. The
current understanding of recoil shift effects is reported
in [51].

Finally, a rather important shift, wholly unrelated to
the experiment proper, may arise if the frequency stan-
dard that serves as reference for synthesisers and fre-
quency counters has a systematic error. This error can
only be identified by comparing the standard, at least
occasionally, to a different, trustable standard. In the
work of refs. [43,45,51] a hydrogenmaser was used as the
frequency standard. Since these instruments can exhibit
substantial, but stable systematic frequency offsets at 1 ×
10−11 level, they need to be calibrated. One option to do
so is with the help of a GNSS receiver that provides a
1-pulse-per-second signal derived from the atomic time
scale.

As an example of experimental efforts on the topic
of the systematic shifts, we may contrast two studies:
in the study of the rotational transition (f0 � 1.3 THz)
several shifts were clearly observed thanks to the high
spectral resolution, and found to be important. For the

overtone transition (f5 � 259 THz) systematic shifts were
barely detected: on one hand because the shifts are
not proportional to the transition frequency and thus
were substantially smaller in fractional terms, and on
the other hand because the experimental resolution was
limited.

4. The confrontation between experiment and
theory

4.1. The hyperfine structure

(a) H+
2

Figure 6 displays the HFS structure for v = 0, 1; it
remains qualitatively the same for higher v. As early
as 1969, Jefferts [32] reported on precision radiofre-
quency spectroscopy of the hyperfine structure of H+

2
in levels (v = 4, 5, 6, 7, 8,N = 1, 2), i.e. in both ortho-
and para-H+

2 . Frequencies of transitions between spin
states of a given rovibrational level were measured with
1.5 kHz uncertainty. Because of the small uncertainty
and the substantial number of transitions reported, the
results are still relevant today. In N = 1 levels, there
are five hyperfine states; Jefferts’ data covers all split-
tings within. In N = 2 levels, there exists only a pair
of states |I = 0,G = 1/2, F = N − 1/2〉 and |I = 0,G =
1/2, F = N + 1/2〉, split in energy by the interaction
between the electron spin G = 1/2 and the rotational
angular momentum N = 2 (Supplemental Material).
This splitting was also determined; it decreases with
increasing v, from 81 MHz (v = 4) to 60 MHz (v =
8). The HFS theory as of 2016 [37] computed split-
tings that are in agreement with the experimental data,
within the above experimental uncertainty. An improved
later calculation [46] allowed a more detailed look at
the coefficient bF ≈ 0.8GHz of the dominant interaction
term bFse · (Ip1 + Ip2) and found agreement with the
experimental counterpart to within 0.8 kHz or less, the
theoretical and experimental uncertainties both being
0.8 kHz.

In the 1970s, Menasian and Dehmelt [88] reported
higher-accuracy results on three transitions previously
reported by Jefferts. These were particular spin-rotation
splittings in ortho-H+

2 (N = 1, v = 4, 5, 6), namely the
splitting between (I = 1,G = 1/2, F = 3/2) and (I =
1,G = 1/2, F = 1/2) due to the interaction between the
total particle spin G = 1/2 and the rotational angu-
lar momentum N = 1. The measured splittings were
≈ 14MHz and their experimental uncertainties 2 Hz,
exceptionally small. Recent HFS theory [89] predicts the
splittings with uncertainty of � 50Hz and is in agree-
ment with experiment.
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(b) HD+

Important early studies were performed by Carring-
ton et al. using the ion beam technique. Hyperfine
components were observed in rovibrational transitions
betweenhighly excited vibrational levels and in rotational
transitions in highly excited vibrational levels. Transi-
tion frequencies were in the far infrared or microwave
range. Differences between transition frequencies of spin
components and absolute frequencies, respectively, were
determinedwith uncertainties of 0.5 to severalMHz. Fur-
thermore, using an infrared/radiofrequency double reso-
nance approach the team was able to observe a substan-
tial number of transitions between spin states within the
same rovibrational level, again for high vibrational levels
(v = 17, 21). The radiofrequency transitions had uncer-
tainties 0.01–0.7MHz. The data was compared with the
spin theory of the time [80].

For vibrational transitions with small vibrational
quantum numbers, individual hyperfine components
were first observed only much later, in 2012 [90].
Although that spectroscopy was not Doppler-free, the
Doppler broadening was smaller than the typical spac-
ing betweenhyperfine components, so that these could be
resolved. Electron-spin-to-nuclear-spin coupling strengths
(E4, E5) in a low-lying vibrational level of HD+ were
determined. In 2018 a hyperfine component of a rota-
tional transition was observed [83] with sub-Doppler
resolution, soon followed by a higher-accuracy measure-
ment of six components [45]. Finally, beginning in 2020
hyperfine components in optical transitions with sub-
Doppler resolution were reported [43,51,82].

Since the HFS theory of HD+ is closely related to
that of H+

2 and the latter is well confirmed by compari-
son with experimental radiofrequency spectroscopy data
(see Section 4.1a), one can take the standpoint that the
HD+ spin theory predictions can be used (i) to check
on the correctness of the experimental measurements,
and (ii) to deduce spin-averaged frequencies from exper-
imentally measured spin component frequencies (see
Section 4.2).

To implement (i), the experimentmustmeasure twoor
more components (lines) fline i of a rotational or rovibra-
tional transition. Pairwise differences are spin frequency
differences, fline i − fline j = fspin,i − fspin,j = �fspin,i,j, and
have numerical values less or equal to approximately
1GHz in magnitude. The differences correspond either
to a HFS splitting within one rovibrational level (if
the two lower states p(i), p(j), or the two upper
states p′(i), p′(j), of the two components are identi-
cal) or to a double difference of hyperfine energies of
the two levels, Espin(v′,N′, p′(i))− Espin(v′,N′, p′(j))−
(Espin(v,N, p(i))− Espin(v,N, p(j))). It should be noted

that a predicted spin frequency difference �f (theor)spin,i,j is a
function of either 11 or 18 (if N,N ′ ≥ 1) individual Ek
coefficients. As all coefficients have been assigned a the-
oretical uncertainty and the correlations between their
uncertainties have been determined, also the theoretical
uncertainty of �f (theor)spin,i,j can be given. The experimental
difference frequencies must be determined with account
of the measurable systematic shifts. But they may still be
affected by unidentified systematic shifts that act differ-
ently on the individual components. Thus, the compari-
son between experimental difference frequencies�f (exp)spin,i,j

and calculated values �f (theor)spin,i,j probes not only the spin
theory, but also the quality of the experiments.

Table 3 summarises the recent precision measure-
ments of the HD+ spin structure. For transitions f1 and f5
the experimental spin structure data and currently most
accurate theoretical prediction are consistent. Discrep-
ancies at the level of up to 1 kHz exist for the rotational
transition f0. In order to obtain a better agreement, ref.
[47] the data of the rotational transition has been used to
fit the three most critical E coefficients, and the largest
difference between experiment and theory was found to
be E (exp)1 − E (theory)1 = −0.5(1)exp(1)theor kHz, i.e. 3.3 σ .
In ref. [51], a different analysis was performed. After
excluding two spin transitions from the analysis, a fit of
E1, E2 resulted in values that differed from the theoreti-
cal predictions by −5.4 ± 0.4 and −5.4 ± 2.8 times their
respective theory uncertainty. For the two-photon transi-
tion f9: v = 0 → v′ = 9 the discrepancy between theory
and experiment is 8.4 kHz (i.e. 9 σ ) [47]. Resolving these
discrepancies is an important near-term task, in order to
achieve consistency of all experiments.

Finally, we mention the sensitivity of the HFS split-
tings to the electric quadrupole moment of the deuteron
Qd, in order to assess the potential of HD+ spec-
troscopy for its determination, further discussed below
in Section 6.3. The sensitivities for the already studied
transitions are indicated in the last column of Table 3.
Only transitions f0, f1, f5 have relevant sensitivities, one
reason being their small values of N,N ′ compared to the
case of transition f9. Considering the total (experimental
and theoretical combined) uncertainties utot of the spin
differences, we see that the rotational transition f0 offers
the highest effective sensitivity, Qd(∂�fspin/∂Qd)/utot �
3 × 10−3. To take advantage of this opportunity, first the
consistency of the rotational transition data and the HFS
theorymust be established.An earlier fit ofQd to the rota-
tional data yielded an uncertainty of 1.5% [45]. For vibra-
tional transitions f1, f5 there is agreement between data
and HFS theory. From the values of line f1 in Table 3 one
may conclude that the literature value ofQd is confirmed
at the Qd(∂�fspin/∂Qd)/utot(f1) � 2.5% level.
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4.2. The spin-averaged transition frequencies

A measured transition is always a spin component
i, its frequency is (theoretically) to be interpreted as
a sum fline i = fspin−avg + fspin,i. As mentioned earlier
(Section 2.3.3), it is in principle possible to obtain the
spin-averaged frequency without knowledge of theoreti-
cal spin frequency values if all favoured spin components
of a transition are measured [26]. The fewer spin compo-
nents are measured, the more accurate the spin theory
values must be. For example, in ref. [45] (reanalysed
in ref. [51]) six out of ten favoured spin components
were measured, and by an appropriate combination, the
spin theory uncertainties were suppressed so well that
the spin-averaged frequency was obtained with spin-
theory related uncertainty negligible compared to the
QED uncertainty (column 3, row 6 in Table 4). In the
extreme case that only a single component fline i is mea-
sured, onemust fully rely on the availability of an accurate
value f (theor)spin,i and the uncertainty of the deduced fspin−avg

will be at least u(f (theor)spin,i ), currently � 0.1 kHz.
In each of three recent vibrational spectroscopy exper-

iments f1, f5, f9 (columns 2,4,5 in Table 4), two spin
components f (exp)line a , f

(exp)
line b were measured. One forms the

linear superposition

f (exp)spin−avg=d(f (exp)line a −f (theor)spin,a )+(1 − d)(f (exp)line b − f (theor)spin,b ),
(6)

with the dimensionless weight d. (The superscript on the
l.h.s. is not fully accurate, but chosen for simplicity.) If
the spin components had no experimental uncertainty
and the theoretical spin frequency no theory uncertainty,
the value of d would be arbitrary, since both terms in
parentheses would then be equal. As this is not the case,
f (exp)spin−avg will have a slight dependence on d. One can
therefore choose the value d so as to minimise the total
uncertainty of f (exp)spin−avg, taking into account correlations
between the uncertainties of the four contributions on the
r.h.s., if any. It is notable that because of the high accuracy
reached in the spin theory, the spin frequency corrections
f (theor)spin,a , f (theor)spin,b applied in the mentioned three experi-
ments do not contribute any substantial uncertainty.

Table 4 presents the spin-averaged transition frequen-
cies related to the four experiments introduced above.
Row 3 shows the experimental uncertainties of the spin-
averaged frequencies, which range from 1.1 to 13 ×
10−12. Row 9 and 10 contain themain results: experiment
and theory of the individual transitions agree at levels
between 1.8 and 2.1 × 10−11, and in all cases the main
contribution is the uncertainty coming from the funda-
mental constantμ/me, that enters the theory predictions.

A few comments are in order. Agreement between
experiment and theory for transition f5 is only found
if the recoil shift is subtracted. Concerning transition

f1, agreement between experiment and theory for the
ratio f5/f1 (see next subsection) is only obtained if no
recoil shift correction is applied to the f1 experimental
frequency. The mentioned (current) incomplete agree-
ment of the experimental and theoretical spin structure
for transitions f0 and f9 implies that the shown results
for f (exp)spin−avg should be taken cautiously. For the rotational
transition f0, the reanalysis of ref. [51] is shown.

4.3. Frequency ratios

The ratio Ra,b = fa/fb of two vibrational transition fre-
quencies is independent of the Rydberg constant. It is
also only weakly dependent on μ/me, if the involved
vibrational quantum numbers are not large, the resid-
ual dependence stemming from the anharmonicity of the
nuclear potential. By considering slightly more compli-
cated functions, fa/(fb)ε , with ε = 1, the sensitivity to the
mass ratio can be reduced further. Furthermore, the con-
tributions from nuclear, relativistic and fromQED effects
scale, for vibrational transitions, approximately linearly
with the transition frequency. The comparison of col-
umn 2 and 4 of Table 4 shows this clearly. This implies
that their fractional contributions to frequency ratios R
are substantially reduced, by approximate factors 10–100.
Thus, the ratios deemphasise the influence of fundamen-
tal constants R∞, μ/me, rp, rd, and of the QED correc-
tions, enhancing the non-relativistic contributions. As a
result, the combined theory and CODATA uncertainty
is low, e.g. 2.6 × 10−12 for the ratio f5/f 0.871 . (The value
depends on the assumed correlation of the uncertainties
of the QED contributions.) Note that this is substan-
tially smaller than the QED uncertainty of an individual
theoretical transition frequency. Then, the comparison
of experimental and theoretical frequency ratios may
be used for verifying the consistency of experimental
results obtained, by the same or different research groups,
on different vibrational transitions. The mentioned ratio
f5/f 0.871 showed an experiment-theory agreement with
combined uncertainty 4.2 × 10−12 [51]. Another way to
look at this result is to realize that it is one of the most
accurate comparisons between a theory prediction and
its experimental value. To the best of the author’s knowl-
edge, there exist only two instances of higher accuracy:
ratios of transition frequencies in atomic hydrogen and
the g-factor of the electron.

5. Applications

5.1. Determination of fundamental constants

We discussed earlier that at present the transition fre-
quencies of HD+ can furnish values for the reduced
nuclearmass in units of the electronmass. Thus, onemay
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Figure 12. Comparison of values of the mass ratio μ/me. μ =
mpmd/(mp + md) is the reduced proton-deuteron mass. ‘LSA-1’
(blue): a least-squares fit based on f1, f5. ’LSA-1b‘ (purple): a least-
squares fit based on f0, f1, f5.Measurements: f5 (brown) [45] (with
additional correction); f1 (cyan) [43] (with additional correction);
f0 (green) [51], f9 (gray) [85]. ‘Penning traps’ (turquoise): com-
puted using the CODATA 2018 value for me/u (that relies mostly
on ref. [92]),md/u [93],md/mp [67]. ‘CODATA 2018’ (black):μ/me
computed using only the CODATA values for me/u, mp/u, md/u.
Note that the value and uncertainty of the ‘CODATA 2018’ entry is
significantly correlated with the ‘Penning traps’ entry. The ‘LSA-1’
value is offset compared to the values from the individual frequen-
cies because the theory uncertainties of the latter are strongly
correlated. From [51].

fit μ/me by requiring

f (theor)spin−avg(μ/me) = f (exp)spin−avg.

The quantity on the l.h.s carries the QED theory uncer-
tainty and the CODATA 2018 uncertainties of the funda-
mental constants R∞, rp, rd, but not of μ/me. The r.h.s.
comeswith the experimental uncertainty. In addition, the
r.h.s. will usually also include a spin theory-related uncer-
tainty, since the spin theory results are invoked to obtain
the spin-averaged frequency. By using the Taylor expan-
sion of the l.h.s. around the CODATA 2018 value of the
fundamental constants, Equation (5), one obtains a value
for μ/me and an associated uncertainty. For the transi-
tions measured so far, the results are reported in line 20
of Table 4. Figure 12 is a graphic depiction.We see that the
uncertainties of the respective μ/me values from each of
the four HD+ transitions are moderately smaller than for
the value obtained from Penning trap data. LSA-1 (blue)
is simultaneous fit of μ/me to the two transitions f1, f5.

From the values of μ/me one can further obtain the
proton-electron mass ratio if one takes into account the
value of md/mp determined by the most accurate Pen-
ning trap experiment [67]. For example, experiment f5

yields

mp/me = 1 836.152 673 463 (10)exp(35)theor,QED
× (1)theor,spin(6)CODATA18,Fink−Myers, (7)

with total fractional uncertainty ur = 2.0 × 10−11. The
value is consistent withmp/me obtained from the atomic
masses of electron [1] and proton [94], 1 836.152 673
390 (81), but is two times more accurate.

5.2. Fundamental physics tests

Most if not all precision experiments can be interpreted
as tests of fundamental physics principles. Perhaps the
most visible example are measurements performed with
atomic clocks, whose uncertainty is today reaching less
than 1 part in 1018. The measurement of the ratio of the
frequencies of two dissimilar atomic clocks, if repeated
in time, can be used to constrain a hypothetical time-
dependence of fundamental constants, or (for co-located
clocks) a hypothetical dependence on the Sun’s gravita-
tional potential. The measurement of the time dilation
effect in a gravitational field is a further use of optical
clocks in fundamental physics. Such tests are noteworthy
in that they do not require an ab initio theory capable of
predicting the frequency of the clock(s). Concerning pre-
cision experiments on MHI, one can similarly consider
tests where ab initio theory is secondary [53]. However,
given that an accurate ab initio theory exists (contrary to
the atomic clocks), one can also envisage tests where its
input is essential.

5.2.1. Confrontation of experiment and theory,
testing for the existence of additional interactions
It has been a fundamental endeavour of Physics to deter-
mine the forces of nature as precisely as possible. The
theoretical description of the forces of the microscopic
world is contained in the StandardModel. Nowadays, one
seeks to search for effects ‘beyond the Standard Model’,
and this includes searches for new forces, that obviously
must be weak, if they exist at all. MHI are unique within
the ‘ecosystem of precision physics’ outlined in the intro-
duction in that their energies are immediately connected
to the force between the two baryons. Of course, the
electron–baryon force is also present and equally affects
the energies. But on this force, the one-electron atoms
provide precise information. Thus, with precision data
on such atomic systems as foundation, there arises the
opportunity to use MHI experimental data and ab initio
theory to constrain the strength of a hypothetical addi-
tional force between the two baryons. (Just as well, we
may view such a force as a modification of the usual
Coulomb force).
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It is necessary to make an assumption about the form
of the additional force. Actually, it is more useful to
consider an additional interaction potential VBSM(R),
since its effect for any rovibrational level can be com-
puted by first-order perturbation theory as the expec-
tation value �Enonrel(v,N) = 〈VBSM(R)〉v,N . This is the
mean of VBSM(R) weighted with the squared nuclear
vibrational wavefunction. A well-motivated functional
form for VBSM is a Yukawa-type interaction, VBSM(R) =
2βpdR−1 exp(−R/�), which arises from the exchange of
a particle of mass proportional to the inverse of the range
�. (The factor 2 is introduced because of the mass 2 u of
the deuteron.) The value of � is unknown, so the analy-
sis is performed for different values. A simplified analysis
consists in assuming that a BSM force indeed exists and
computing its strength βpd = βpd(�) from

hf (exp)spin−avg(v,N, v′,N′) = hf (theor)spin−avg(v,N, v′,N′)

+ 2βpd(�)(〈R−1exp(−R/�)〉v′ ,N′

− 〈R−1exp(−R/�)〉v,N).

The solution also yields the uncertainty u(βpd(�)); it
originates from the uncertainties of f (exp)spin−avg and of

f (theor)spin−avg, and therefore includes all uncertainties dis-
cussed so far, including the CODATA uncertainty of the
fundamental constants. As is seen from Equation (5) for
example, it is indeed the CODATA 2018 uncertainty of
the masses that will determine the uncertainty of β and
therefore the reach of the test.

Two generalisations are worth mentioning: with a set
ofHD+ data available, one can simultaneously determine
μ/me and βpd [51]. This circumvents the need to use
the CODATA 2018 value of μ/me and its inaccuracy.
The most important uncertainty is then the QED the-
ory uncertainty. The HD+ data available as of today
does not show evidence of the existence of an additional
proton-deuteron force.

A second, major generalisation is the following. In
the considerations so far, it has been assumed that all
is well with the electron–baryon interaction, which in
the MHI is as significant as the baryon–baryon interac-
tion [51,85]. That this is so, is shown by hydrogen atom
spectroscopy. However, the interpretation of hydrogen
spectroscopy data is affected by the charge radii of the
proton and the deuteron. These values today come from
muonic hydrogen spectroscopy, a system whose forces,
the muon-proton force and the muon-deuteron force,
could also contain deviations from the Coulomb force.

Thus, we see that a major goal would be an encom-
passing analysis of the results of all few-body systems,
including two-electron systems, leading to bounds to a
set of BSM forces. This set is particularly large if one

wishes to differentiate between the baryons p, d, t, e.g.
between a proton-proton and a proton–deuteron force.

5.2.2. Testing for deviations from standard quantum
mechanics
One can consider deviations from standard quantum
mechanics at the level of the Schrödinger equation, i.e.
the existence of additional terms. For example, on can
consider a local self-interaction term of the form Uself =
η |�({ri})|2, where � is the wavefunction of the sys-
tem, ri are the particle coordinates, and η is an unknown
dimensional parameter to be bounded by experiments.
The analysis approach is similar to above. It is inter-
esting to note that the vibrational transition frequency
ratios mentioned above are sensitive to this type of self-
interaction. A preliminary bound to η has been derived
[51].

5.2.3. Testing for non-standard quantum physics
without the need of ab initio theory
A second topic are generalisations of standard quan-
tum mechanics. S. Weinberg has analysed possible
experimental consequences of so-called Lindblad quan-
tum mechanics [95]. He suggested to consider atomic
clocks with threemetastable levels a, b, c andmeasure the
three transition frequencies fab, fbc, fac. Then one should
verify whether indeed fab + fbc = fac. No ab initio the-
ory of the transition frequencies is required. The present
author has suggested to use the MHI for this purpose,
since they provide a multitude of metastable levels and
the potential for high metrological accuracy [96,97]. A
preliminary test ofWeinberg’s suggestion, relying instead
on ab initio theory, is discussed in ref. [51].

A (far) future opportunity is a test of the time-
independence of the electron–nuclear mass ratio; it is
elaborated on below in Section 6.3.

6. Outlook

6.1. Upcoming studies

The current line of work on HD+ can be pursued to
higher experimental accuracy and extended to more
transitions. Taking advantage of the correlation of the
QED uncertainties it should be possible to improve on
some of the physics tests described above. Resolution of
the current questions about the hyperfine structure will
require a repeat of previous or additional measurements.

6.2. Experiments with single ions

Nowadays, the most accurate spectroscopy of ions is the
spectroscopy of atomic ions for optical clocks. It is per-
formed on a single ion or, if necessary because of the
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lack of an accessible cycling transition, on a pair of ions,
the spectroscopy ion and the ‘logic’ ion [98]. It has been
established that under such conditions the control of sys-
tematic shifts is possible to a very high degree, down to
1 × 10−18, currently. It is natural to ask whether similar
uncertaintiesmight be achievable forMHI. This question
has been analysed theoretically [96,97] and it has been
estimated that uncertainties in the 10−17 range should be
achievable, a level far beyond the present status. Clearly,
it is of interest to develop the field in that direction.

A first task consists in developing the methods for
preparing single ultracold MHI in a trap. In the field
of precision mass spectroscopy in Penning traps, this is
today almost standard. Moreover, as the traps are nowa-
days cryogenic and thus exhibit negligible black-body
radiation intensity and excellent vacuum, the MHI are
eventually cooled internally to the rovibrational ground
state (v = 0,N = 0), regardless of being hetero- or
homonuclear [19,67]. Currently, the translational energy
of the single MHI in Penning traps is several kelvin. In
the future, advanced cooling methods (e.g. sympathetic
cooling) may allow to lower the temperature. Recently,
also in RF traps single MHI, sympathetically cooled by a
single beryllium ion, have been prepared [15,16].

A second task is providing methods to detect a spec-
troscopic transition in the single MHI. For a single HD+
in a Penning trap this has been achieved for the first
time in 2021 using the continuous-Stern-Gerlach-effect
technique. Direct spectroscopy of the spin structure was
accomplished [19]. This result promises to be useful also
for optical spectroscopy of MHI in a Penning trap, as
proposed in ref. [99]. In a RF trap one requires a differ-
ent technique, quantum logic or optical force detection
[69,100]. For MHI, these have not yet been shown to be
feasible, but experiments are in preparation.

6.3. Possible future studies

1. Obviously, the most important evolution from the
present state-of-the-art will be to perform spectroscopy
on other MHI species, with the goal of determining the
mass ratios mp/me, md/me, mt/me individually. One
approach would involve measuring the three heteronu-
clear MHI HD+, HT+ and DT+, and deducing the ratios
from the three corresponding reduced masses. However,
this would involve working with radioactive MHI, an
endeavour that poses certain safety challenges. mp/me,
md/me can be determined individually be complement-
ing the HD+ measurements with measurements on H+

2
or D+

2 . For example, it has been proposed to measure the
(v = 0,N = 2) → (v′ = 1,N′ = 2) fundamental vibra-
tional transition of H+

2 by two-photon, Doppler-free
spectroscopy using a 9.2 μm laser [60,101]. Electric

quadrupole (E2) one-photon transitions are an alterna-
tive [61]. Doppler-free signals should be obtainable as is
feasible with E1 transitions in HD+. A proof-of-principle
experiment has recently shown this [59] (Figure 11).

2. The ‘big goal’ of MHI precision physics in the con-
text of BSM physics consists in setting improved bounds
on BSM forces between any two particles. There are four
particles (e, p, d, t) and thus potentially 10 different
BSM interactions. Taking into account that onemust also
determine three mass ratios, three nuclear charge radii
and the Rydberg constant, the magnitude of the effort
appears daunting, especially if no input data from other
systems (hydrogen, muonic hydrogen, mass spectrom-
etry) is used. A reduced research program could focus
on H+

2 only, aiming to determine mp/me, βep, βpp, rp,
R∞ from a sufficiently large set of vibrational transition
frequencies. Input could come from atomic hydrogen
spectroscopy, contributing to βep, rp, R∞.

3. The electric quadrupole moment of the deuteron,
Qd. The most accurate determination of this quantity
is from a comparison of precision radiofrequency spec-
troscopy of neutral molecular hydrogen performedmore
than half a century ago by Ramsey et al. and the recent
accurate ab initio theory of the molecule. This resulted in
Qd = 0.285699(15)theo(18)expfm2 [57]. Note the impres-
sive total uncertainty below 1 × 10−4. The theory uncer-
tainty arises because the hyperfine interactions were
treated in Breit–Pauli approximation, which omits terms
of fractional order α2. It is also notable that the total
uncertainty is 200 times smaller than the most accurate
value obtained from nuclear physics experiment and the-
ory [102]. As described, the spin frequencies of HD+,
D+
2 and DT+ are also affected by Qd. The computation

of the spin hamiltonian coefficients (in HD+, E9 ∝ Qd,
in D+

2 , E6 ∝ Qd [40]) and of the spin structure yields the
sensitivities of the spin frequencies to Qd. Values of up
to approximately 100 kHz/fm2 are found, see [40] and
Table 3. An experimental spectroscopic accuracy at the
level of 1 Hz is therefore required in order to obtain
a competitive uncertainty for Qd. This appears possi-
ble using radiofrequency spectroscopy, either in an RF
trap or in a Penning trap. Achieving this accuracy in
rovibrational spectroscopy would be challenging; more-
over, at least two spin components would need to be
measured, in order not to incur the QED uncertainty of
the spin-averaged frequency. Similar to neutral molec-
ular hydrogen, also for the MHI the computation of
E6,9/Qd has so far been performed only in Breit–Pauli
approximation. The prospect of more accurate exper-
imental measurements may motivate a more accurate
theory.

4. The triton is a three-nucleon system with spin
1/2 and zero quadrupole moment. Its charge radius is



28 S. SCHILLER

experimentally determined as r(es)t = 1.755(86) fm from
electron scattering (es) experiments. The 5% fractional
uncertainty is substantially larger than that of rp and
rd. The triton is of particular interest in nuclear physics
because a quantity related to the charge radius, the point
charge radius δrC, can be computed using effective field
theory. A recent theoretical calculation yielded δrC =
1.62(3) fm [103]. The value extracted from experimental
data via the relation (δr(exp)C )2 = (r(exp)t )2 − (r(exp)p )2 −
2 (r(exp)n )2 is in agreement, δr(exp)C � 1.598(40) fm (n is
the neutron). Very recently, a different calculation [104]
yielded a preliminary value rt = 1.773(9) fm, where the
experimentally determined3He charge radius was used
as one input datum. It is more accurate than r(es)t ,
thus prompting the need for more accurate measure-
ments. This might be accomplished combining precision
theory and spectroscopy of HT+. The nuclear volume
shift in HT+ due to the triton may be estimated [36]
as −302(30)es kHz for the f5 : (0, 0) → (5, 1) transition.
The stated uncertainty (from u(r(es)t )) may be compared
with the uncertainty arising from undetermined QED
corrections, which is likely to be similar to that for HD+,
� 2 kHz, and from the reduced mass uncertainty, �
7 kHz, which is dominated by u(mp/me). Thus, there is
the prospect of determining rt more accurately by fac-
tor of approximately four. Once the value of mp/me is
determined more precisely via HD+/H+

2 spectroscopy, a
further improvement of rt may follow.

5. Intercomparisons of atomic and molecular fre-
quency standards performed over long time spans can
be used to search for a hypothetical drift of the fun-
damental constants. Atomic transition frequencies are
sensitive to the fine-structure constant (in all stan-
dards) and, in microwave standards, additionally to
the proton-to-electron mass ratio and nuclear g-factors.
Inter-comparisons of optical atomic standards (optical
clocks) have set impressive upper bounds to a drift ofα. A
fewmeasurements onmolecules have been performed in
the past, with metrological performance weak compared
to today’s performance of atomic clocks. Comparisons
between cesium fountain clocks and an optical atomic ion
clock have been performed over nearly a decade, leading
to a strong bound on the drift rate ofmp/me,−0.8(3.6)×
10−17/yr [105]. In view of this, could theMHI play a role
[53]? It has been argued that the transition frequencies
of MHI can be determined with uncertainties in the low
10−17 range. Thus, MHI precision spectroscopy could
eventually lead to stricter bounds than those obtainable
with theCs clock. It is important to remark that alsomany
othermolecules, including othermolecular ions, that can
be provided trapped andultracold, are candidates for per-
forming such tests. In addition, hyperfine transitions in

highly charged ions, at optical frequencies, are suitable
candidates [106]. Theoretical analyses on the metrolog-
ical potential of such systems have been performed and
experimental studies are under way.

6.4. Spectroscopy of anti-MHI

A key test of CPT invariance is being pursued by opti-
cal spectroscopy of antihydrogen. The 1s - 2s transition
frequency of hydrogen is proportional to the Rydberg
constant, i.e. to meq2eq2p (q is the charge), with a small
correction (∝ me/mp fractionally) arising from centre-
of-mass motion, and a 4 × 10−10 fractional contribution
from the finite charge radius of the proton. Thus, the
comparison of hydrogen and antihydrogen optical fre-
quencies tests for CPT invariance concerning several par-
ticle properties. Furthermore, independent experiments
have determined that the charges of electron and proton
are equal and opposite to an extreme degree; for antimat-
ter this has been verified with lower precision (1 × 10−12

level). In terms of parameters of the Standard Model, the
comparison tests for CPT invariance of the fine-structure
constant (i.e. the strength of the lepton-baryon interac-
tion), the electron mass and, via the nuclear radii, the
QCD energy scale.

It is conceivable that the anti-hydrogen optical spec-
troscopy reaches the 10−17 uncertainty level. How-
ever, because the sensitivity of the (anti)hydrogen
spectroscopy to the (anti)proton mass is small, other
approaches for testing the equality of antiproton and
proton mass are desirable. Measurement of the charge-
to-mass ratios of the proton and of the antiproton in a
Penning trap is such an approach, and a test at the 1.6 ×
10−11 level has been achieved at CERN, with prospects of
further improvement.

One can argue that a powerful test of CPT symme-
try could also be implemented by comparison of vibra-
tional transition frequencies of H+

2 and anti-H+
2 . This

‘holy grail’ of MHI spectroscopy was originally proposed
by Dehmelt [107] and recently analysed by Myers [99].
The possibility of producing anti-H+

2 has been discussed
[108], and modelling has suggested associative ionisa-
tion of two anti-hydrogen atoms in the 2s – state to be
a possible pathway.

Because the accuracy potential of MHI vibrational
spectroscopy is the 10−17 level [96,97], and because of the
first-order dependence of the vibrational transition fre-
quencies on the electron–proton mass ratio, a MHI-CPT
test of proton-antiproton mass equality could be orders
of magnitude more accurate than current alternatives.

It is pertinent to reexamine the dependence of
the vibrational frequencies on the fundamental con-
stants. In Sec. 2.2.2. we derived the scaling fvib ∝
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R∞m1/2
e m−1/2

p . This is valid for transitions between lev-
els with small v, v′. For a general vibrational transition,
the second and third factors are replaced by (me/mp)

ζ .
The factor R∞ is to be replaced by R∞q4+κe q−κ

p ,
where q is now the charge of the particle relative
to its nominal charge (−e or +e). The exponents
ζ((v,N), (v′,N′)) and κ((v,N), (v′,N′)) can be computed
approximately in the Born-Oppenheimer approximation
or precisely from numerical solutions of the nonrelativs-
tic three-body problem. From the latter, we find that κ
varies strongly with v, v′. For example, κ((0, 0), (1, 0)) �
−0.087, κ((1, 0), (3, 2) � 0.023. For the anti-H+

2 , for sim-
plicity we assume that the antiproton-antiproton inter-
action retains the R−1 dependence, and at most the
antiproton and positron charges are modified.

The MHI-CPT test consists in measuring the fre-
quency ratio

fvib(v, v′)
f vib(v, v′)

= q4+κe q−κ
p m1+ζ

e m−ζ
p

q4+κe+ q−κ
p m1+ζ

e+ m−ζ
p

.

Here, f vib is the frequency of the same transition in anti-
H+

2 . The r.h.s. is a (symbolic) expression that describes
the sensitivity of the experimentally measurable fre-
quency ratio on the particle properties (assuming their
deviations from the nominal values to be small). Not
shown is a small (3 × 10−10) contribution from the pro-
ton and antiproton charge radii, as discussed in Sec.
2.3.4.

Unless the independent verification of charge neutral-
ity for antimatter improves by five orders of magnitude
compared to the present status, it would be advantageous
to choose a transition for which κ differs substantially
from zero, so as to allow a verification.

Thus, the test would be sensitive to all those constants
and interactions that are tested separately in other exper-
iments: comparisons of e − e+ mass-to-charge ratio, p −
p̄ charge-to-mass ratio, H - H̄ electronic transition fre-
quency, ge − ge+ (i.e. QED), gp − gp̄. (i.e. nuclear struc-
ture). Arguably, aMHI-CPT test could reach higher accu-
racy than the first and second test; comparable accuracy
to even future versions of the second and third test; but
lower accuracy than the fifth test. Morevover, the MHI-
CPT test would also comprise a CPT test of the otherwise
not precisely testable p̄ − p̄ interaction.

7. Conclusion

As a consequence of continued developments performed
over the past two decades, precision rovibrational spec-
troscopy of theMHI today stands at the low-10−12 uncer-
tainty level for one species, a noteworthy improvement

from the 1 × 10−6 level set nearly half-a century ago by
Lamb and coworkers. This has been possible by radically
changing the experimental approach. Equally impressive
have been the advances in ab initio theory, which have
covered a comparable factor. Based on the progress in
these two areas, the established result as of today is the
possibility of determining a particular combination of
fundamental constants, me/mp + me/md, with accuracy
competitive with the most precise alternative determina-
tion via Penning trap mass spectrometry on the individ-
ual particles. With this achievement, MHI spectroscopy
has been demonstrated to represent a link between the
mass spectrometry of the simplest particles and the spec-
troscopy of the hydrogen atom. The determination of
the above mass ratio combination by MHI spectroscopy
has only been possible after the proton and deuteron
charge radii were determined by other means (hydro-
gen and muonic hydrogen spectroscopy). Four preci-
sion spectroscopy studies on HD+ have been performed
and their experimental accuracies were at or below the
level of the current QED theory uncertainty. Substantial
improvements in the accuracy of the abovemass ratio are
therefore not straightforward. The confrontation of MHI
theory and MHI experiment has also permitted realising
some novel and improved tests of fundamental physics. It
is noteworthy that the confrontation of frequency ratios
appears to be the third-most accurate confrontation in all
of physics.

It is expected that further improvements in experi-
mental accuracy of HD+ spectroscopy will be achieved
in the near future, using single- or two-ion trapping and
interrogation techniques. There are also plenty of oppor-
tunities to perform precision measurements on other
MHI, such as H+

2 , D
+
2 , HT+; these MHI can be inves-

tigated using similar approaches as those demonstrated
on HD+ and on altogether different diatomic molecular
ions. This should lead to determinations of the individual
nuclear mass ratios and to additional and more accu-
rate tests of fundamental physics concepts. The author
hopes that the success achieved so far and the probable
progress on the experimental side will stimulate strong
efforts on the QED theory front. Such efforts appear very
worthwhile, albeit challenging.
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A. Hyper�ne structure of HD+
7

Suitable basis states for diagonalizing the spin hamiltonian are the pure spin (angular momentum) states8

jG1G2FmF i. They have well-de�ned values of G2
1, G

2
2, F

2, Fz. The spin hamiltonian commutes only with F
2

9

and with Fz. In zero magnetic �eld the energies are degenerate with respect to the magnetic quantum number mF ,10

so it is not displayed in this section.11

1. Hyper�ne structure in levels having N = 0.12

The \rotationless" levels N = 0 have the simplest hyper�ne structure and are treated as follows. The hyper�ne13

hamiltonian in levels having N = 0 and arbitrary v is simply14

Hspin(v;N = 0) = E4(v;N = 0) se � Ip + E5(v;N = 0) se � Id:
A basis for representing the spin structure are the four pure states jG1G2F i : fj100i; j011i; j111i; j122ig. Note the15

ordering with increasing value of F . The spin structure hamiltonian is given by16

Hspin(v; 0) =
1
4

0
BB@
E4 � 4E5 0 0 0

0 �3E4 �2p2E5 0

0 �2p2E5 E4 � 2E5 0
0 0 0 E4 + 2E5

1
CCA17

Its diagonalization is trivial: the four spin energies and spin eigenstates can be expressed in elementary form. The18

eigenenergies are also special cases of those presented in eqs. (1,3,4).19

2. Hyper�ne structure in levels having N = 1.20

The basis for expressing the spin structure hamiltonian in matrix form are the 10 pure states that can be obtained21

by coupling the four angular momenta of electron, proton, deuteron and rotation,22

fj010i; j110i; j011i; j101i; j111i; j121i; j012i; j112i; j122i; j123ig:
Here, too, the ordering is with increasing F . The spin hamiltonian matrix is given in the Appendix of this Supplemental23

Material. The matrix is easily diagonalized using standard mathematical software, yielding the spin energies and24

eigenstates in zero magnetic �eld. Three eigenenergies and eigenstates can be expressed in elementary form, see25

below. The energies of all other states are solutions of cubic and quartic equations and cannot be given in elementary26

form.27

3. Special states28

Since the basis states are states of well-de�ned total angular momentum magnitude, F (F + 1)~2, and since the29

spin hamiltonian commutes with the total angular momentum operator squared F2, the hamiltonian matrix elements30

� step.schiller@hhu.de

mailto:step.schiller@hhu.de
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are nonzero only between pure spin states having equal value of F . (Proof: [H;F2] = 0 ) hpj[H;F2]jp0i = 031

= hp0jHF (F + 1)jpi � hp0jF 0(F 0 + 1)Hjpi = [F (F + 1) � F 0(F 0 + 1)]hp0jHjpi ) hp0jHjpi / �FF 0). The hamiltonian32

matrix therefore has block form, see tables. This has the consequence that the energies of some spin states can be33

expressed in relatively simple form [1{3].34

(1) For any N , there is only one pure spin state with the maximum angular momentum F = N + 2. These may35

be called \stretched" states. Thus, they do not couple to any other pure spin state; they are eigenstates of the36

hamiltonian. Their other quantum numbers are G1 = 1; G2 = 2 and in this case are also exact quantum numbers.37

The energies of the stretched states were �rst given by [2],38

Espin(v;N;G1 = 1; G2 = 2; F = N + 2) =
1

4
E4 + 1

2
E5+ (1)

N

2
(E1 + E2 + 2E3 � (2N � 1)(E6 + 2E7 + 2E8 + E9)) :

These levels have been addressed in the experiments in refs. [4{6].39

(2) For N 6= 1, there exists another pure spin state that is an eigenstate of the hamiltonian. It is the pure state
with minimum angular momentum F = N � 2 or, if N = 0, F = 0. It might be called \folded" state. Its energy is

Espin(v;N � 2; G1 = 1; G2 = 2; F = N � 2) =
1

4
E4 + 1

2
E5 � 1

2
(N + 1)� (2)

(E1 + E2 + 2E3 + (2N + 3) (E6 + 2E7 + 2E8 + E9)) ;
Espin(v;N = 0; G1 = 1; G2 = 0; F = 0) =

1

4
E4 � E5 : (3)

Here, G1 and G2 are also exact quantum numbers. The level (3) has been addressed in the experiments in refs. [4, 5].
The pure states (1), (2) were already pointed out in ref. [7], within the framework of an approximate spin hamiltonian.
A consequence of the expressions is that there are two types of favored E1 transitions whose spin frequency contribution
has a simple form, a linear function of the spin hamiltonian coe�cients,

jv;N;G1 = 1; G2 = 2; F = N + 2i $ jv0; N 0 = N + 1; G01 = 1; G02 = 2; F 0 = N 0 + 2i; allN ;

jv;N;G1 = 1; G2 = 2; F = N � 2i $ jv0; N 0 = N + 1; G01 = 1; G02 = 2; F 0 = N 0 � 2i; N � 2 :

The �rst is a stretched-states transition (addressed in the experiments in refs. [5, 6]), the second is a folded-states40

transition.41

(3) For N = 0(1) levels there is one value of F that is taken on by two pure spin states: F = 1(0). This means that42

the hamiltonian matrix contains one 2� 2 block, which describes the coupling between the pure spin states, see the43

hamiltonian matrices. The eigenvalues of this block give two eigenenergies and eigenstates as solutions of a quadratic44

equation. They were �rst given in in Ref. [2] for N = 0 and are here generalized for N = 1,45

Espin(v;N = 0(1); G1 = 0; G2 = 1; F = 1(0)) =
1

2

�
E11 + E22 �

q
E2
11 � 2E11E22 + 4E2

12 + E2
22

�
;

Espin(v;N = 0(1); G1 = 1; G2 = 1; F = 1(0)) =
1

2

�
E11 + E22 +

q
E2
11 � 2E11E22 + 4E2

12 + E2
22

�
;

E11 = �2E3 � 3

4
E4 � 5E9 ;

E22 =
1

4
(�2E1 � 2E2 � 4E3 + E4 � 2E5 + 10E6�

20E7 � 20E8 + 10E9) ;

E12 =
1p
2
(E1 � E2 � E5 + 5E7 � 5E8) : (4)

(For N = 0, only E4 and E5 are nonzero). These levels have been addressed in the experiments in refs. [4, 5, 8].46
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B. Zeeman e�ect in HD+
47

The interaction of the molecule with a magnetic �eld B aligned with the z axis is approximately given by48

HZeeman(v;N) = �(gesez + gpIp;z + gdId;z + gl(v;N)Nz)�BB ;

neglecting additional terms [9]. The last term describes (if N > 0) the e�ect of a magnetic moment induced by49

molecular rotation. The rotational g-factor gl(v;N) is nonzero if N � 1 and is presented in ref. [2]. It is weakly50

v-dependent. The signs are as follows: �B , gp, gd, gl are positive, ge ' �2 is negative. The g-factors of proton,51

deuteron and nuclear rotation are small, of order me=mp.52

In �rst approximation one can use for ge; gp; gd the values of the free particles. For a precision calculation one must53

take into account that the electron is bound and that the proton and deuteron are shielded by the electron cloud.54

The g-factor of an electron bound to the MHI and the shielding has been approximately evaluated in ref. [9]. The55

main correction is a reduction of the free-space g-factor by approximately 2� 10�5 fractionally, where the reduction56

is also (weakly) dependent on the rovibrational state (v;N).57

The Zeeman splitting of the spin structure is found by adding spin and Zeeman hamiltonians. Even in the presence58

of a magnetic �eld, we may still use the basis introduced earlier, but extended to include the magnetic quantum59

number. (An altogether di�erent basis could also be used.) The total hamiltonian does not commute any more with60

F
2, but only with Fz. Therefore, the total hamiltonian does not have matrix elements between basis states having61

di�erent value of magnetic quantum number mF . Thus, to �nd the spin structure in a nonzero magnetic �eld B one62

proceeds to compute separately the eigenenergies and eigenstates for each value of mF .63

1. Zeeman e�ect in levels having N = 0.64

For each value of mF = �Fmax; :::;+Fmax = �2; :::; 2, the basis states are65

jG1G2FmF i = fj100mF i; j011mF i; j111mF i; j122mF ig ;
where one drops from the list those states where F < jmF j.66

The above spin structure hamiltonian also applies to this basis, and is independent of mF . The Zeeman hamiltonian67

corresponding to a particular mF is HZeeman(N = 0;mF ) = �B B h(0;mF ), with the appropriate columns and rows68

dropped. The h are as follows:69

h(0; 0) = 1
2
p
3

0
BB@

0 gp � ge
p
2 (�2gd + ge + gp) 0

gp � ge 0 0
p
2 (ge � gp)p

2 (�2gd + ge + gp) 0 0 �2gd + ge + gp
0

p
2 (ge � gp) �2gd + ge + gp 0

1
CCA70

h(0; 1) = 1
4

0
BB@

0 0 0 0

0 �4gd
p
2 (ge � gp)

p
2 (ge � gp)

0
p
2 (ge � gp) �2gd � ge � gp �2 gd + ge + gp

0
p
2 (ge � gp) �2gd + ge + gp �2 gd � ge � gp

1
CCA71

h(0;�1) = 1
4

0
BB@

0 0 0 0

0 4gd
p
2 (gp � ge)

p
2 (ge � gp)

0
p
2 (gp � ge) 2gd + ge + gp �2 gd + ge + gp

0
p
2 (ge � gp) �2gd + ge + gp 2 gd + ge + gp

1
CCA72

h(0; 2) = 1
2

0
B@

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 �2gd � ge � gp

1
CA73

h(0;�2) = 1
2

0
B@

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 2gd + ge + gp

1
CA74

There is no dependence of v, since gl does not appear if N = 0.75
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In the case mF = 0, one diagonalizes Hspin(v; 0) + �B B h(0; 0), a 4� 4 matrix.76

For mF = �1, one considers the subspace formed by the basis states having F � 1, i.e. one drops the �rst row and77

�rst column of the matrix Hspin(v; 0) + �B B h(0;�1), since they correspond to the basis state jG1G2F i = j100i that78

can only have the mF = 0 Zeeman component.79

The next case is mF = �2, and one drops the �rst three rows and columns. This case also corresponds to80

mF = �Max(F ). In general (i.e. also for nonzero N) the spin plus Zeeman hamiltonian matrix is then just a 1 � 181

matrix, and thus the matrix element is the corresponding eigenenergy. The Zeeman shift is strictly linear. The82

eigenstates are the stretched states.83

Figure 1 presents the Zeeman e�ect for the case v = 0.84

2. Zeeman e�ect in levels having N = 185

The computation of the eigenstates in nonzero magnetic �eld proceeds analogously to the case N = 0: when86

treating the case jmF j one drops those rows and columns from the matrix sum Hspin(v;N = 1) + �B B h(v; 1;mF )87

corresponding to F < jmF j. The matrices h(v; 1;mF ) are given in the Appendix of this Supplemental Material. They88

are v-dependent, since they involve gl.89

The total hamiltonian is easily diagonalized using standard mathematical software. The Zeeman shift is strictly90

linear for the stretched states jG1 = 1; G2 = 2; F = 3;mF = �3i.91
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FIG. 1. The spin structure of HD+ in the ground rovibrational level v = 0; N = 0. Red and magenta curves are the stretched
states.

92
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C. Hyper�ne structure of H+
293

The hyper�ne structure is simpler than that of HD+. The spin hamiltonian contains 5 spin coe�cients that have94

been calculated ab initio [10]. The general hamiltonian matrix can be found in explicit form in ref. [1]. Eigenstates95

and eigenenergies are discussed at some length in ref. [11].96

In any rovibrational level, the most appropriate basis are the pure angular momentum states jIGFmF i, with �xed97

value of the total nuclear spin I, de�nite values of coupled electron spin and total nuclear spin G, and the total angular98

momentum of the molecule F = Max(fjG�N j; 0g); :::; G+N . Consider �rst the absence of magnetic �eld, hence we99

drop the quantum number mF .100

For even N (para-H+
2 ) the spin structure is particularly simple (Fig. 6 of main text): the total nuclear spin has to101

vanish, I = 0. We then have the analog of the well-known problem of the hyper�ne structure of an atom with an102

electronic spin doublet con�guration: a single electron spin coupling to another angular momentum. In the present103

case it is not a nuclear spin but a (integer only) rotational angular momentum.104

If N = 0 there results a single spin state, jI = 0; G = 1=2; F = 1=2i and the spin energy is zero.105

Otherwise, the hamiltonian simpli�es to Hspin(v;N > 0; even) = ce(v;N even) se �N. There are only two pure basis106

states, jI = 0; G = 1=2; F = N � 1=2i. The spin hamiltonian is already diagonal in this basis (see listing below). The107

energies are given by the simple expressions108

Espin(v;N � 2; G =
1

2
; F = N � 1

2
) = �N + 1

2
ce ;

Espin(v;N � 2; G =
1

2
; F = N +

1

2
) =

N

2
ce :

For odd N (ortho-H+
2 ), the situation is slightly more intricate. The basis states are jI = 1; G = 1=2; F = N � 1=2i,109

jI = 1; G = 3=2; F = N � 1=2i, jI = 1; G = 3=2; F = N � 3=2i. They are six in number except in the case N = 1,110

where there are only �ve. The hamiltonian matrix is block diagonal, with two diagonal entries and two 2� 2 blocks.111

Thus, two hyper�ne states (or one if N = 1), including the stretched state F = N +3=2, are pure angular momentum112

states and have energies that are linear functions of the spin coe�cients, and four are solutions of two quadratic113

equations. The explicit expressions for the energies appear to have �rst been given in ref. [12].114
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D. Zeeman e�ect in para-H+
2115

The treatment is particularly simple for even N [13]. The approximate Zeeman hamiltonian is116

HZeeman(v;N even) = �(gese;z + gl(v;N)Nz)�BB ;

with the same nomenclature as for HD+. Except in N = 0 levels, it is v-dependent. The values for the g-factors are117

given in refs. [9, 13]. The total hamiltonian in �nite magnetic �eld B is the sum Hspin(v;N even)+HZeeman(v;N even).118

It commutes with Fz: The matrix hamiltonians for di�erent values of magnetic quantum number mF are listed below.119

Rows and columns refer to the two states j0; 1=2; N � 1=2;mF i, j0; 1=2; N + 1=2;mF i. Eigenvalues and eigenstates120

are trivially found. Figure 2 displays an example of the spin structure.121

mF Hspin(v;N = 0)=ce(v;N = 0) HZeeman(v;N = 0;mF )/(�BB)

� 1
2 0 ge

2
1
2 0 � ge

2

122

mF Hspin(v;N = 2)=ce(v;N = 2) HZeeman(v;N = 2;mF )=(�BB)

� 5
2 1 1

2

�
ge + 4gl)

� 3
2

 
� 3

2 0

0 1

!
1
10

 
�3 (ge � 6gl) 4 (ge � gl)

4 (ge � gl) 3 (ge + 4gl)

!

� 1
2

 
� 3

2 0

0 1

!
1
10

 
6gl � ge 2

p
6 (ge � gl)

2
p
6 (ge � gl) ge + 4gl

!

1
2

 
� 3

2 0

0 1

!
1
10

 
ge � 6gl 2

p
6 (ge � gl)

2
p
6 (ge � gl) �ge � 4gl

!

3
2

 
� 3

2 0

0 1

!
1
10

 
3 (ge � 6gl) 4 (ge � gl)

4 (ge � gl) �3 (ge + 4gl)

!
5
2 1 1

2

�� ge � 4gl)

123

mF Hspin(v;N = 4)=ce(v;N = 4) HZeeman(v;N = 4;mF )=(�BB)

� 9
2 2 1

2 (ge + 8gl)

� 7
2

 
� 5

2 0

0 2

!
1
18

 
70gl � 7ge 4

p
2 (ge � gl)

4
p
2 (ge � gl) 7 (ge + 8gl)

!

� 5
2

 
� 5

2 0

0 2

!
1
18

 
50gl � 5ge 2

p
14 (ge � gl)

2
p
14 (ge � gl) 5 (ge + 8gl)

!

� 3
2

 
� 5

2 0

0 2

!
1
6

 
10gl � ge 2

p
2 (ge � gl)

2
p
2 (ge � gl) ge + 8gl

!

� 1
2

 
� 5

2 0

0 2

!
1
18

 
10gl � ge 4

p
5 (ge � gl)

4
p
5 (ge � gl) ge + 8gl

!

1
2

 
� 5

2 0

0 2

!
1
18

 
ge � 10gl 4

p
5 (ge � gl)

4
p
5 (ge � gl) �ge � 8gl

!

3
2

 
� 5

2 0

0 2

!
1
6

 
ge � 10gl 2

p
2 (ge � gl)

2
p
2 (ge � gl) �ge � 8gl

!

5
2

 
� 5

2 0

0 2

!
1
18

 
5 (ge � 10gl) 2

p
14 (ge � gl)

2
p
14 (ge � gl) �5 (ge + 8gl)

!

7
2

 
� 5

2 0

0 2

!
1
18

 
7 (ge � 10gl) 4

p
2 (ge � gl)

4
p
2 (ge � gl) �7 (ge + 8gl)

!
9
2 2 1

2 (�ge � 8gl)

124
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FIG. 2. The spin structure of para-H+
2 in the rovibrational level v = 0; N = 2. Black and brown curves are the stretched states.
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APPENDIX TO THE SUPPLEMENTAL MATERIAL125

Spin structure and Zeeman hamiltonians of HD+ for levels N = 1.126

The spin hamiltonian, Hspin(v;N = 1) is given in Table I. It is v-dependent.127

The Zeeman hamiltonians, HZeeman(v;N = 1;mF ) = �BB h(v;N = 1;mF ) are given in the subsequent tables. They128

are also v-dependent. For a more compact presentation of the Zeeman hamiltonians, we have introduced the129

short-hand notations:130

gd1 = gd + gl
gd2 = gd � gl
g� = �2gd + ge + gp
g+ = 2gd + ge + gp
ge�p = ge � gp
g+l = g+ � 4gl

131

Hspin(v; 1) = � 1

4
p
3
�0

BBBBBBBBBBBBBBBBBBB@

p
3 (8E3 + 3E4 + 20E9) 2

p
6 (�E1-2 + E5 � 5E7 + 5 E8) 0 0 0

: hs22(1) 0 0 0

: :
p
3 (4E3 + 3E4 � 10 E9) �2

p
2E1-2

p
6 (�E1-2 + 2E5 + 5E7 � 5 E8)

: : : �
p
3 (E4 � 4E5) 4 (E1+2 � 2E3)

: : : : hs55(1)

: : : : :

: : : : :

: : : : :

: : : : :

: : : : :

1
CCCCCCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBBBBBB@

0 0 0 0 0

0 0 0 0 0p
10 (E1-2 + 9E7 � 9 E8) 0 0 0 0

4
p
15 (E6 � E7 � E8 + E9) 0 0 0 0p

5 (E1+2 � 2E3 + 9E6 � 9 E9) 0 0 0 0

hs66(1) 0 0 0 0

:
p
3 (�4E3 + 3E4 + 2E9)

p
6 (E1-2 + 2 E5 � E7 + E8) 3

p
2 (E1-2 � 3E7 + 3E8) 0

: : hs88(1) 3 (E1+2 � 2 E3 � 3E6 + 3E9) 0

: : : hs99(1) 0

: : : : hs1010(1)

1
CCCCCCCCCCCCCCCCCCCA

hs22(1) =
p
3 (2E1-2 + 4 E3 � E4 + 2E5 � 10E6 + 20 E7 + 20E8 � 10E9) ; hs55(1) =

p
3 (E1+2 + 2 E3 � E4 + 2E5 + 5E6 � 10 E7 � 10E8 + 5E9)

hs66(1) =
p
3 (3E1 + 3E2 + 6 E3 � E4 � 2E5 + 7E6 + 14 E7 + 14E8 + 7E9) ; hs88(1) = �

p
3 (E1+2 + 2 E3 + E4 � 2E5 + E6 � 2E7 � 2 E8 + E9)

hs99(1) =
p
3 (E1+2 + 2 E3 � E4 � 2E5 � 7E6 � 14 E7 � 14E8 � 7E9) ; hs1010(1) = �

p
3 (2E1-2 + 4 E3 + E4 + 2E5 � 2E6 � 4E7 � 4 E8 � 2E9)

E1+2 = E1 + E2; E1-2 = E1 � E2

TABLE I. Spin hamiltonian matrix for N = 1. The matrix is split into two halves; the left half is displayed above the right
half. The matrix is symmetric, so the elements below the diagonal are not displayed. Abbreviations used are shown at the
bottom. The v-dependence is implied.
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h(1;�2) = 1

12

0
BBBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 12gd1 �3
p
2 ge�p �

p
6ge�p 2

p
3ge�p

0 0 0 0 0 0 �3
p
2ge�p 3 (4 gl + g+) �

p
3g�

p
6g�

0 0 0 0 0 0 �
p
6ge�p �

p
3 g� 4gl + 5g+

p
2g+l
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p
3ge�p

p
6 g�

p
2g+l 4 (2gl + g+)

1
CCCCCCCCCCCCCCCCCA

h(1; 2) = 1

12

0
BBBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 �12gd1 3
p
2 ge�p

p
6ge�p 2

p
3ge�p

0 0 0 0 0 0 3
p
2ge�p �3 (4 gl + g+)

p
3g�

p
6g�

0 0 0 0 0 0
p
6ge�p

p
3g� �10gd � 5ge � 4gl � 5gp

p
2g+l

0 0 0 0 0 0 2
p
3ge�p

p
6 g�

p
2g+l �4 (2gl + g+)

1
CCCCCCCCCCCCCCCCCA

TABLE IV. Normalized Zeeman hamiltonians for mF = �2.

h(1;�3) = 1
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0
BBBBBBBBBBBBBBBBB@
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0 0 0 0 0 0 0 0 0 0
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1
CCCCCCCCCCCCCCCCCA

h(1; 3) = 1

2

0
BBBBBBBBBBBBBBBBB@
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1
CCCCCCCCCCCCCCCCCA

TABLE V. Normalized Zeeman hamiltonians for mF = �3.
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